Skip to main content

Modeling Degradation of Cementitious Materials in Aggressive Aqueous Environments

  • Chapter
  • First Online:

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 10))

Abstract

The vast majority of the world’s concrete infrastructure was built around the middle of the twentieth century, and for the most part is now approaching an age of half a century or more. In many cases, the structures are showing signs of degradation mechanisms such as corrosion of the steel reinforcement, alkali-silica reaction (ASR), and freeze-thaw.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The situation is different in groundwater transport, where the homogeneous reactions are an important part of the pollutant movement process (see for instance MacQuarrie and Mayer 2005).

References

  • Adenot, F., Buil, M.: Modeling of the corrosion of the cement paste by deionized water. Cem. Concr. Res. 22, 489–496 (1992)

    Google Scholar 

  • Appelo, C.A.J.: Multicomponent ion exchange and chromatography in natural systems. Rev. Mineral. Reactive Transp. Porous Media 34, 193–227 (1996)

    Google Scholar 

  • Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. A.A. Balkema, Rotterdam (1996)

    Google Scholar 

  • Babushkin, V.I., Matveev, O.P., Mčedlov-Petrosjan, O.P.: Thermodinamika Silikatov. Strojisdat, Moskau (1965)

    Google Scholar 

  • Babushkin, V.I., Matveyev, G.M., Mchedlov-Petrossyan, O.P.: Thermodynamics of Silicates. Springer, Berlin (1985)

    Google Scholar 

  • Baggio, P., Majorana, C.E., Schrefler, B.A.: Thermo-hygro-mechanical analysis of concrete. Int. J. Numer. Methods Fluids 20, 573–595 (1995)

    MATH  Google Scholar 

  • Barbarulo, R., Marchand, J., Snyder, K.A., Prené, S.: Dimensional analysis of ionic transport problems in hydrated cement systems. Cem. Concr. Res. 30, 1955–1960 (2000)

    Google Scholar 

  • Barret, P., Bertrandie, D., Beau, D.: Calcium hydrocarboaluminate, carbonate, alumina gel and hydrated aluminates solubility diagram calculated in equilibrium with CO2g and with Na +aq ions. Cem. Concr. Res. 13, 789–800 (1983)

    Google Scholar 

  • Bary, B., Bournazel, J.P., Bourdarot, E.: Poro-damage approach applied to hydro-fracture analysis of concrete. J. Eng. Mech. 126, 937–943 (2000)

    Google Scholar 

  • Bary, B., Ranc, G., Durand, S., Carpentier, O.: A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures. Int. J. Heat Mass Transf. 51, 2847–2862 (2008)

    MATH  Google Scholar 

  • Bary, B., Leterrier, N., Deville, E., Le Bescop, P.: Coupled chemo-transport-mechanical modeling and simulation of mortar external sulfate attack. In: Proceedings – CONMOD 2010, pp. 65–78. Lausanne, Switzerland (2010)

    Google Scholar 

  • Bary, B., Leterrier, N., Deville, E., Le Bescop, P.: Coupled mechanical and chemo-transport model for the simulation of cementitious materials subjected to external sulfate attack. In: Proceedings – NUWCEM 2011, Avignon, France (2011)

    Google Scholar 

  • Bazant, Z.P., Najjar, L.J.: Drying of concrete as a nonlinear diffusion problem. Cem. Concr. Res. 1, 461–473 (1971)

    Google Scholar 

  • Bear, J.: Dynamics of Fluid in Porous Media. Dover, New-York (1988)

    Google Scholar 

  • Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  • Beddoe, R.E., Hillbig, H.: Acid attack on concrete – a new computer model. In: Setzer, M.J. (ed.) Proceedings of the 5th International Essen Workshop, pp. 387–398. Aedification Publishers, Essen (2007)

    Google Scholar 

  • Beddoe, R.E., Schmidt, K.: Effect of concrete composition on resistance of concrete to acid attack. In: Concrete in Aggressive Aqueous Environments, vol. 1: Performance, Testing and Modeling, RILEM Proceedings 63, Toulouse, France, pp. 187–195 (2009)

    Google Scholar 

  • Berner, U.R.: Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Manag. 12, 201–219 (1992)

    Google Scholar 

  • Bockris, J.O.’.M., Reddy, A.K.N.: Modern Electrochemistry – An Introduction to an Interdisciplinary Area. Plenum Press, New York (1970)

    Google Scholar 

  • Bourbon, X.: Chemical conceptual model for cement based materials ~ mineral phases and thermodynamic data. ANDRA Technical Report C.NT.ASCM.03.026.A, ANDRA, Chatenay-Malabry, France (2003)

    Google Scholar 

  • Brown, P., Haworth, A., Sharland, S., Tweed, C.: HARPHRQ: a geochemical speciation program based on PHREEQE – users guide. Report NSS/R188, Harwell Laboratory, Oxfordshire, United Kingdom (1991)

    Google Scholar 

  • Buffo-Lacarrière, L., Sellier, A.: Numerical modeling of effects of chemical evolution on mechanical behaviour of concrete. In: Concrete in Aggressive Aqueous Environments, vol. 1: Performance, Testing and Modeling, RILEM Proceedings 63, Toulouse, France, pp. 167–178 (2009)

    Google Scholar 

  • Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Turatsinze, A.: Multiphasic finite element modeling of concrete hydration. Cem. Concr. Res. 37, 131–138 (2007)

    Google Scholar 

  • Buil, M., Revertegat, E., Oliver, J.: A model of the attacks of pure water or undersaturated lime solutions on cement. In: Stabilization and Solidification of Hazardous Radioactive and Mixed Wastes, 2nd vol. ASTM STP 1123. pp. 227–241. Philadelphia, USA (1992)

    Google Scholar 

  • Cederberg, G.A., Street, R.L., Leckie, J.O.: A groundwater mass transport and equilibrium chemistry model for multicomponent systems. Water Resour. Res. 21, 1095–1104 (1985)

    Google Scholar 

  • Cervera, M., Olivier, J., Prato, T.: Thermo-chemo-mechanical model for concrete. II: Damage and creep. J. Eng. Mech. 125, 1018–1027 (1999)

    Google Scholar 

  • Chijimatsu, M., Fujita, T., Kobayashi, A., Nakano, M.: Experiment and validation of numerical simulation of coupled thermal, hydraulic and mechanical behavior in the engineered buffer materials. Int. J. Numer. Anal. Methods Geomech. 24, 403–424 (2000)

    MATH  Google Scholar 

  • Corazza, E., Sabelli, C.: The crystal structure of syngenite, K2Ca(SO4)2*(H2O). Zeitschrift für Kristallographie 124, 398–408 (1967)

    Google Scholar 

  • Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester (1995)

    MATH  Google Scholar 

  • Daimon, M., Abo-El-Enein, S.A., Hosaka, G., Goto, S., Kondo, R.: Pore structure of calcium silicate hydrate in hydrated tricalcium silicate. J. Am. Ceram. Soc. 60, 110–114 (1977)

    Google Scholar 

  • Damidot, D., Stronach, S., Kindness, A., Atkins, M., Glasser, F.P.: Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25° C and the influence of Na2O. Cem. Concr. Res. 24, 563–572 (1994)

    Google Scholar 

  • De Windt, L., Pellegrini, D., van der Lee, J.: Coupled modeling of cement/claystone interactions and radionuclide migration. J. Contam. Hydrol. 68, 165–182 (2004)

    Google Scholar 

  • Engesgaard, P., Kipp, K.L.: A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: a case of nitrate removal by oxidation of pyrite. Water Resour. Res. 28, 2829–2843 (1992)

    Google Scholar 

  • Fetter, C.W.: Contaminant Hydrogeology. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  • Galindez, J.M., Molinero, J.: On the relevance of electrochemical diffusion for the modeling of degradation of cementitious materials. Cem. Concr. Compos. 32, 351–359 (2010)

    Google Scholar 

  • Garboczi, E.J., Bentz, D.P.: Computer simulation of the diffusivity of cement-based materials. J. Mater. Sci. 27, 2083–2092 (1992)

    Google Scholar 

  • Gawin, D., Schrefler, B.A.: Thermo-hydro-mechanical analysis of partially saturated porous materials. Eng. Comput. 13, 113–143 (1996)

    MATH  Google Scholar 

  • Gawin, D., Pesavento, F., Schrefler, B.A.: Modeling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water. Int. J. Numer. Anal. Methods. Geomech. 26, 537–562 (2002a)

    Google Scholar 

  • Gawin, D., Pesavento, F., Schrefler, B.A.: Simulation of damage-permeability coupling in hygro-thermo-mechanical analysis of concrete at high temperature. Commun. Numer. Methods. Eng. 18, 113–119 (2002b)

    Google Scholar 

  • Gawin, D., Pesavento, F., Schrefler, B.A.: Hygro-chemo-mechanical modeling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. Int. J. Numer. Methods. Eng. 67, 299–331 (2006)

    MATH  Google Scholar 

  • Gérard, B., Pijaudier-Cabot, G., Laborderie, C.: Coupled diffusion-damage modeling and the implications on failure due to strain localidsation. Int. J. Solids Struct. 35, 4107–4120 (1998)

    MATH  Google Scholar 

  • Gospodinov, P.N., Kazandjiev, R.F., Partalin, T.A., Mironova, M.K.: Diffusion of sulfate ions into cement stone regarding simultaneous chemical reactions and resulting effects. Cem. Concr. Res. 29, 1591–1596 (1999)

    Google Scholar 

  • Gray, W.G., Schrefler, B.A.: Thermodynamic approach to effective stress in partially saturated porous media. Eur. J. Mech. A/Solids 20, 521–538 (2001)

    MATH  Google Scholar 

  • Grove, D.B., Wood, W.W.: Prediction and field verification of subsurface-water quality changes during artificial recharge, Lubbock, Texas. Groundwater 17, 250–257 (1979)

    Google Scholar 

  • Haga, K., Sutou, S., Hironaga, M., Tanaka, S., Nagasaki, S.: Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste. Cem. Concr. Res. 35, 1764–1775 (2005)

    Google Scholar 

  • Helfferich, F.: Ion Exchange. McGraw-Hill, New York (1961)

    Google Scholar 

  • Henocq, P., Marchand, J., Samson, E., Lavoie, J.A.: Modeling of ionic interactions at the C-S-H surface – application to CsCl and LiCl solutions in comparison with NaCl solutions. In: Marchand, J. et al. (eds.) 2nd International Symposium on Advances in Concrete through Science and Engineering, RILEM Proceedings PRO, vol. 51. RILEM Publications, Quebec City (2006)

    Google Scholar 

  • Hidalgo, A., De Vera, G., Climent, M.A., Andrade, C., Alonso, C.: Measurements of chloride activity coefficients in real Portland cement paste pore solutions. J. Am. Ceram. Soc. 84, 3008–3012 (2001)

    Google Scholar 

  • Hummel, W., Berner, U., Curti, E., Pearson, F.J., Thoenen, T.: Nagra/PSI chemical thermodynamic data base 01/01. USA, also published as Nagra Technical Report NTB 02–16. Universal Publishers, Wettingen (2002)

    Google Scholar 

  • Jacques, D., Simunek, J., Mallants, D., van Genuchten, M.T.: Operator splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J. Contam. Hydrol. 88, 197–218 (2006)

    Google Scholar 

  • Jennings, A.A., Kirkner, D.J., Theis, T.L.: Multicomponent equilibrium chemistry in groundwater quality models. Water Resour. Res. 18, 1089–1096 (1982)

    Google Scholar 

  • Johannesson, B.F.: A theoretical model describing diffusion of a mixture of different types of ions in pore solution of concrete coupled to moisture transport. Cem. Concr. Res. 33, 481–488 (2003)

    Google Scholar 

  • Kanney, J.F., Miller, C.T., Kelley, C.T.: Convergence of iterative split operator approaches for approximating nonlinear reactive transport problems. Adv. Water Resour. 26, 247–261 (2003)

    Google Scholar 

  • Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (1995)

    MATH  Google Scholar 

  • Khalili, N., Loret, B.: An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media: formulation. Int. J. Solids Struct. 38, 8305–8330 (2001)

    MATH  Google Scholar 

  • Kirkner, D.J., Reeves, H.W.: Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of the chemistry on the choice of numerical algorithm, 1. Theory. Water Resour. Res. 24, 1719–1729 (1988)

    Google Scholar 

  • Kirkner, D.J., Reeves, H.W., Jennings, A.A., et al.: Finite element analysis of multicomponent contaminant transport including precipitation-dissolution reactions. In: Laible, J.L. (ed.) Finite Elements in Water Resources, pp. 309–318. Springer, New York (1984)

    Google Scholar 

  • Kuhl, D., Bangert, F., Meschke, G.: Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling. Int. J. Solids Struct. 41, 15–40 (2004a)

    MATH  Google Scholar 

  • Kuhl, D., Bangert, F., Meschke, G.: Coupled chemo-mechanical deterioration of cementitious materials. Part II: numerical methods and simulations. Int. J. Solids Struct. 41, 41–67 (2004b)

    MATH  Google Scholar 

  • Kulik, D., Berner, U., Curti, E.: Modeling geochemical equilibrium partitioning with the GEMS-PSI Code, in PSI Scientific Report vol IV. In: Smith, B., Gschwend, B. (eds.) Nuclear Energy and Safety, pp. 109–122 (ISSN 1423-7334). Paul Scherrer Institute, Villigen, Switzerland (2003)

    Google Scholar 

  • Li, Y.H., Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714 (1974)

    Google Scholar 

  • Lichtner, P.C.: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochim. Cosmochim. Acta 49, 779–800 (1985)

    Google Scholar 

  • Lothenbach, B., Winnefeld, F.: Thermodynamic modeling of the hydration of Portland cement. Cem. Concr. Res. 36, 209–226 (2006)

    Google Scholar 

  • Lothenbach, B., Matschei, T., Möschner, G., Glasser, F.P.: Thermodynamic modeling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 38, 1–18 (2008)

    Google Scholar 

  • Lothenbach, B., Bary, B., Le Bescop, P., Schmidt, T., Leterrier, N.: Sulfate ingress in Portland cement. Cem. Concr. Res. 40, 1211–1225 (2010)

    Google Scholar 

  • MacQuarrie, K.T.B., Mayer, K.U.: Reactive transport modeling in fractured rock: a state-of-the-science review. Earth Sci. Rev. 72, 189–227 (2005)

    Google Scholar 

  • Mainguy, M., Tognazzi, C., Torrenti, J.-M., Adenot, F.: Modeling of leaching in pure cement paste and mortar. Cem. Concr. Res. 30, 83–90 (2000)

    Google Scholar 

  • Mainguy, M., Coussy, O., Baroghel-Bouny, V.: Role of air pressure in drying of weakly permeable materials. J. Eng. Mech. 127, 582–592 (2001)

    Google Scholar 

  • Maltais, Y., Samson, E., Marchand, J.: Predicting the durability of Portland cement systems in aggressive environments – laboratory validation. Cem. Concr. Res. 34, 1579–1589 (2004)

    Google Scholar 

  • Martín-Pérez, B., Pantazopoulou, S.J., Thomas, M.D.A.: Numerical solution of mass transport equations in concrete structures. Comput. Struct. 79, 1251–1264 (2001)

    Google Scholar 

  • Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modeling of concrete clay interactions. J. Hydrol. 364, 58–72 (2009)

    Google Scholar 

  • Masi, M., Colella, D., Radaelli, G., Bertolini, L.: Simulation of chloride penetration in cement-based materials. Cem. Concr. Res. 27, 1591–1601 (1997)

    Google Scholar 

  • Matschei, T., Lothenbach, B., Glasser, F.P.: Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37, 1379–1410 (2007)

    Google Scholar 

  • Mazars, J., Pijaudier-Cabot, J.P.: Continuum damage theory – application to concrete. J. Eng. Mech. 115, 345–365 (1989)

    Google Scholar 

  • Meeussen, J.C.L.: ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ. Sci. Technol. 37, 1175–1182 (2003)

    Google Scholar 

  • Meschke, G., Grasberger, S.: Numerical modeling of coupled hygromechanical degradation of cementitious materials. J. Eng. Mech. 129, 383–392 (2003)

    Google Scholar 

  • Miller, C.W., Benson, L.V.: Simulation of solute transport in a chemically reactive heterogeneous system: model development and application. Water Resour. Res. 19, 381–391 (1983)

    Google Scholar 

  • Möschner, G., Lothenbach, B., Rose, J., Ulrich, A., Figi, R., Kretschmar, R.: Solubility of Fe-ettringite (Ca6(Fe(OH)6)2(SO4) .3 26H2O). Geochim. Cosmochim. Acta 72, 1–18 (2008)

    Google Scholar 

  • Nagesh, M., Bhattacharjee, B.: Modeling of chloride diffusion in concrete and determination of diffusion coefficients. ACI Mater. J. 95, 113–120 (1998)

    Google Scholar 

  • Obeid, W., Alliche, A., Mounajed, G.: Identification of the physical parameters used in the thermo-hygro-mechanical model (application to the case of cement mortar). Transp. Porous Media 45, 215–239 (2001)

    Google Scholar 

  • Pankow, J.F.: Aquatic Chemistry Concepts. Lewis Publishers, Chelsea (1994)

    Google Scholar 

  • Pavlík, V.: Corrosion of hardened cement paste by acetic and nitric acids Part I: Calculation of corrosion depth. Cem. Concr. Res. 24, 551–562 (1994)

    Google Scholar 

  • Peppler, R.B., Wells, L.S.: The system of lime, alumina, and water from 50 to 250°C. J. Res. Natl. Bur. Stand. 52, 75–92 (1954)

    Google Scholar 

  • Planel, D.: Les effets couples de la precipitation d’espèces secondaires sur le comportement mecanique et la degradation chimique des bétons, Ph.D. thesis (in French), Marne-La-Vallée, France (2002)

    Google Scholar 

  • Planel, D., Sercombe, J., Le Bescop, P., Adenot, F., Torrenti, J.M.: Long-term performance of cement paste during combined calcium leaching-sulfate attack: kinetics and size effect. Cem. Concr. Res. 36, 137–143 (2006)

    Google Scholar 

  • Reardon, E.J.: An ion interaction model for the determination of chemical equilibria in cement/water systems. Cem. Concr. Res. 20, 175–192 (1990)

    Google Scholar 

  • Reardon, E.J.: Problems and approaches to the prediction of the prediction of the chemical composition in cement/water systems. Waste Manag. 12, 221–239 (1992)

    Google Scholar 

  • Rigo, E., Schmidt-Döhl, F., Krauss, M., Budelmann, H.: Transreac: a model for the calculation of combined chemical reactions and transport processes and its extension to a probabilistic approach. Cem. Concr. Res. 35, 1734–1740 (2005)

    Google Scholar 

  • Robie, R.A., Hemingway, B.S.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U. S. Geological Survey Bulletin 2131, Virginia, USA (1995)

    Google Scholar 

  • Rubin, J.: Transport of reacting solutes in porous media: relation between mathematical nature of problem formulation and chemical nature of reactions. Water Resour. Res. 19, 1231–1252 (1983)

    Google Scholar 

  • Saaltink, M.W., Carrera, J., Ayora, C.: On the behavior of approaches to simulate reactive transport. J. Contam. Hydrol. 48, 213–235 (2001)

    Google Scholar 

  • Saetta, A., Scotta, R., Vitaliani, R.: Analysis of chloride diffusion into partially saturated concrete. ACI Mater. J. 90, 441–451 (1993)

    Google Scholar 

  • Samson, E., Marchand, J.: Modeling the effect of temperature on ionic transport in cementitious materials. Cem. Concr. Res. 37, 455–468 (2007a)

    Google Scholar 

  • Samson, E., Marchand, J.: Modeling the transport of ions in unsaturated cement-based materials. Comput. Struct. 85, 1740–1756 (2007b)

    Google Scholar 

  • Samson, E., Lemaire, G., Marchand, J., Beaudoin, J.J.: Modeling chemical activity effects in strong ionic solutions. Comput. Mater. Sci. 15, 285–294 (1999)

    Google Scholar 

  • Samson, E., Marchand, J., Snyder, K.A., Beaudoin, J.J.: Modeling ion and fluid transport in unsaturated cement systems in isothermal conditions. Cem. Concr. Res. 35, 141–153 (2005)

    Google Scholar 

  • Sarkar, S., Mahadevan, S., Meeussen, J.C.L., van der Sloot, H., Kosson, D.S.: Modeling and sensitivity analysis of cementitious materials degradation under combined calcium leaching and external sulfate attack. Cem. Concr. Comp. 32, 241–252 (2010)

    Google Scholar 

  • Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R.: A thermodynamic and experimental study of the conditions of thaumasite formation. Cem. Concr. Res. 38, 337–349 (2008)

    Google Scholar 

  • Schmidt-Döhl, F., Rostásy, F.S.: A model for the calculation of combined chemical reactions and transport processes and its application to the corrosion of mineral-building materials. Cem. Concr. Res. 29, 1039–1045 (1999)

    Google Scholar 

  • Schrefler, B.A.: Multiphase flow in deforming porous material. Int. J. Numer. Methods Eng. 60, 27–50 (2004)

    MATH  MathSciNet  Google Scholar 

  • Schrefler, B.A., Pesavento, F.: Multiphase flow in deforming porous material. Comput. Geotech. 31, 237–250 (2004)

    Google Scholar 

  • Sellier, A., Buffo-Lacarrière, L., El Gonouni, M., Bourbon, X.: Behaviour of HPC nuclear waste storage structures in leaching environment. In: Concrete in Aggressive Aqueous Environments, vol. 1: Performance, Testing and Modeling, RILEM Proceedings 63, Toulouse, France, pp. 142–166 (2009)

    Google Scholar 

  • Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907–950 (1997)

    Google Scholar 

  • Simunek, J., Suarez, D.L.: Two-dimensional transport model for variably saturated porous media with major ion chemistry. Water Resour. Res. 30, 1115–1133 (1994)

    Google Scholar 

  • Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)

    Google Scholar 

  • Steefel, C.I., MacQuarrie, K.T.B.: Approaches to modeling of reactive transport in porous media. Rev. Mineral. Reactive Transp. Porous Media 34, 83–129 (1994)

    Google Scholar 

  • Sten-Knudsen, O.: Biological Membranes – Theory of Transport, Potentials and Electric Impulses. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Stora, E., Bary, B., He, Q.-C., Deville, E., Montarnal, P.: Modelling and simulations of the chemo–mechanical behaviour of leached cement-based materials: leaching process and induced loss of stiffness. Cem. Concr. Res. 39, 763–772 (2009)

    Google Scholar 

  • Stora, E., Bary, B., He, Q.-C., Deville, E., Montarnal, P.: Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials: interactions between damage and leaching. Cem. Concr. Res. 40, 1226–1236 (2010)

    Google Scholar 

  • Stumm, W., Morgan, J.J.: Aquatic Chemistry – Chemical Equilibria and Rates in Natural Waters, 3rd edn. Wiley Interscience, New York (1996)

    Google Scholar 

  • Tang, L., Nilsson, L.-O.: Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cem. Concr. Res. 23, 247–253 (1993)

    Google Scholar 

  • Thoenen, T., Kulik, D.: Nagra/PSI chemical thermodynamic database 01/01 for the GEM-Selektor (V.2-PSI) geochemical modeling code. Villigen. http://gems.web.psi.ch/doc/pdf/TM-44-03-04-web.pdf, PSI (2003). Accessed 2010

  • Tixier, R., Mobasher, B.: Modeling of damage in cement-based materials subjected to external sulfate attack. 1: Formulation. J. Mater Civil Eng 15, 305–313 (2003)

    Google Scholar 

  • Trotignon, L., Devallois, V., Peycelon, H., Tiffreau, C., Bourbon, X.: Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste. Phys. Chem. Earth 32, 259–274 (2007)

    Google Scholar 

  • Truc, O., Ollivier, J.P., Nilsson, L.O.: Numerical simulation of multi-species diffusion. Mater. Struct. 33, 566–573 (2000)

    Google Scholar 

  • Ulm, J.F., Coussy, O.: Modeling of thermochemomechanical couplings of concrete at early ages. J. Eng. Mech. 121, 785–794 (1995)

    Google Scholar 

  • Ulm, J.F., Coussy, O.: Couplings in early-age concrete: from material modeling to structural design. Int. J. Solids Struct. 35, 4295–4311 (1998)

    MATH  Google Scholar 

  • Ulm, J.F., Torrenti, J.M., Adenot, F.: Chemoporoplasticity of calcium leaching in concrete. J. Eng. Mech. 125, 1200–1211 (1999)

    Google Scholar 

  • Valocchi, A.J., Street, R.L., Roberts, P.V.: Transport of ion-exchanging solutes in groundwater: chromatographic theory and field simulations. Water Resour. Res. 17, 1517–1527 (1981)

    Google Scholar 

  • Van der Lee, J.: Modélisation du comportement géochimique et du transport des radionucléides en présence de colloïdes. Thèse de l’Ecole Nationale Supérieure des Mines de Paris, 200 p (1997)

    Google Scholar 

  • Van Genuchten, M.T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. 44, 892–898 (1980)

    Google Scholar 

  • Walsh, M.P., Bryant, S.L., Shechter, R.S., Lake, L.W.: Precipitation and dissolution of solids attending flow through porous media. AIChE J. 30, 317–328 (1984)

    Google Scholar 

  • Walter, A.L., Frind, E.O., Blowes, D.W., Ptacek, C.J., Molson, J.W.: Modeling of multicomponent reactive transport in groundwater 1. Model development and evaluation. Water Resour. Res. 30, 3137–3148 (1994)

    Google Scholar 

  • Westall, J., Zachary, J., Morel, F.M.M.: MINEQL- a computer program for the calculation of the chemical equilibrium composition of aqueous systems. Technical Report 86–01, Department of Chemistry, Oregon State University (1986)

    Google Scholar 

  • Whitaker, S.: Simultaneous heat, mass and momentum transfer in porous media: a theory of drying. Adv. Heat Transf. 13, 119–203 (1977)

    Google Scholar 

  • Whitaker, S., et al.: Coupled transport in multiphase systems: a theory of drying. In: Hartnett, J.P. (ed.) Advance in Heat Transfer, vol. 31, pp. 1–104. Academic Press, San Diego, USA (1998)

    Google Scholar 

  • Wolery, T.: EQ3/6: A software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0). UCRL-MA-1106662 PTI ed., Lawrence Livermore National Laboratory, Livermore (1992)

    Google Scholar 

  • Xi, Y., Bazant, Z.P., Molina, L., Jennings, H.M.: Moisture diffusion in cementitious materials – moisture capacity and diffusivity. Adv. Cem. Based Mater. 1, 258–266 (1994)

    Google Scholar 

  • Xu, T., Samper, J., Ayora, C., Manzano, M., Custodio, E.: Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J. Hydrol. 214, 144–164 (1999)

    Google Scholar 

  • Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydro-geochemical transport models of reactive multichemical components. Water Resour. Res. 25, 93–108 (1989)

    Google Scholar 

  • Yokozeki, K., Watanabe, K., Sakata, N., Otsuki, N.: Modeling of leaching from cementitious materials used in underground environment. Appl. Clay Sci. 26, 293–308 (2004)

    Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn. McGraw-Hill, London (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Samson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 RILEM

About this chapter

Cite this chapter

Le Bescop, P., Lothenbach, B., Samson, E., Snyder, K.A. (2013). Modeling Degradation of Cementitious Materials in Aggressive Aqueous Environments. In: Alexander, M., Bertron, A., De Belie, N. (eds) Performance of Cement-Based Materials in Aggressive Aqueous Environments. RILEM State-of-the-Art Reports, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5413-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5413-3_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5412-6

  • Online ISBN: 978-94-007-5413-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics