Skip to main content

The Post-Newtonian Approximation

  • Chapter
General Relativity

Part of the book series: Graduate Texts in Physics ((GTP))

  • 9473 Accesses

Abstract

This chapter is devoted to the study of the motion of multiple isolated bodies under their mutual gravitational interaction and of the accompanying emission of gravitational radiation, a subject of great astrophysical interest. Only approximation methods, that make use of some small parameters for sufficiently separated bodies are treated. Before starting with this, we address some conceptual issues, in particular the notion of asymptotic flatness. Afterward, we treat in detail only the first post-Newtonian approximation, but an outline of the general strategies of approximation methods is included. As an application of the post-Newtonian approximation, the Einstein–Infeld–Hoffmann equations will be derived. These are, for instance, needed for the study of binary systems of two neutron stars. Binary pulsar data provide the best available tests of GR. For the analysis of the impressive data, an accurate theoretical analysis of the pulsar arrival times is needed. One of the main sections is devoted to this. We present the current results coming from several binary pulsars, in particular those from the first double pulsar that is by now the best laboratory for testing GR or alternative theories of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a function (like u in Sect. 4.8.1) whose level surfaces are null hypersurfaces opening up toward the future.

  2. 2.

    This term is due to Brillouin and Levi-Civita.

  3. 3.

    The term 2 ϕ/∂t 2 does not contribute to M because it equals \(-\frac{1}{4}\boldsymbol{\nabla}\cdot(\partial\xi/\partial t)\) (see (6.35)), and hence vanishes upon integration.

  4. 4.

    Note that since the prefactor in (6.80) approaches zero as α⟶0, only an infinitesimal neighborhood of z a contributes to the integral.

  5. 5.

    Let \(\mathcal {L}(q,\dot{q},\lambda)\) be a Lagrangian which depends on a parameter λ. The canonical momenta are \(p=\partial\mathcal{L}/\partial\dot{q}\) and it is assumed that these equations can uniquely be solved for \(\dot{q}=\phi(q,p,\lambda)\) for every λ. Now \(H(p,q,\lambda)=p \phi(q,p,\lambda)-\mathcal{L}(q,\phi(q,p,\lambda),\lambda)\) and hence

    $$\frac{\partial H}{\partial\lambda}=p\frac{\partial\phi}{\partial\lambda}-\frac{\partial \mathcal{L}}{\partial\dot{q}}\frac{\partial\phi}{\partial\lambda}- \frac{\partial\mathcal {L}}{\partial\lambda}=-\frac{\partial\mathcal{L}}{\partial\lambda}. $$
  6. 6.

    In the perturbation terms we can replace p 2 by

    $$\frac{2 m_1m_2}{m_1+m_2} \biggl(E+\frac{G m_1m_2}{r} \biggr). $$
  7. 7.

    The method is similar to the one used in Sect. 6.4.

  8. 8.

    The following readily identifiable nomenclature is used for pulsars: The prefix PSR (abbreviation of “pulsar”) is followed by a four-digit number indicating right ascension (in 1950.0 coordinates). After that a sign and two digits indicate degrees of declination. If the pulsar is a member of a binary system, this is sometimes indicated by the letter B after the prefix PSR.

References

Textbooks on General Relativity: Selection of (Graduate) Textbooks

  1. N. Straumann, General Relativity and Relativistic Astrophysics. Texts and Monographs in Physics (Springer, Berlin, 1984)

    Book  Google Scholar 

Textbooks on General Physics and Astrophysics

  1. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

Research Articles, Reviews and Specialized Texts: Chapter 2

  1. C.M. Will, Living Rev. Relativ. 9, 3 (2006). gr-qc/9811036

    ADS  Google Scholar 

Research Articles, Reviews and Specialized Texts: Chapter 4

  1. R.A. Hulse, Rev. Mod. Phys. 66, 699 (1994)

    Article  ADS  Google Scholar 

  2. J.H. Taylor, Rev. Mod. Phys. 66, 711 (1994)

    Article  ADS  Google Scholar 

  3. J.M. Weisberg, J.H. Taylor, Astrophys. J. 576, 942 (2002)

    Article  ADS  Google Scholar 

Research Articles, Reviews and Specialized Texts: Chapter 6

  1. T. Damour, The problem of motion in Newtonian and Einsteinian gravity, in 300 Years of Gravitation, ed. by S.W. Hawking, W. Israel (Cambridge University Press, London, 1987)

    Google Scholar 

  2. R. Penrose, The light cone at infinity, in Relativistic Theories of Gravitation, ed. by L. Infeld (Pergamon, Oxford, 1964)

    Google Scholar 

  3. H. Friedrich, Conformal Einstein evolution, in The Conformal Structure of Spacetime, ed. by J. Frauendiener, H. Friedrich (Springer, Berlin, 2002)

    Google Scholar 

  4. J. Frauendiener, Conformal infinity. Living Rev. Relativ. 3, 4 (2000). http://www.livingreviews.org/Articles/lrr-2000-4

    MathSciNet  ADS  Google Scholar 

  5. H. Friedrich, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 378, 401 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. H. Bondi, M.G.J. Van der Burg, A.W.K. Metzner, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 289, 21 (1962)

    Article  ADS  Google Scholar 

  7. J. Nester, W. Israel, Phys. Lett. 85, 259 (1981)

    Article  MathSciNet  Google Scholar 

  8. A. Ashtekar, A. Magnon-Ashtekar, Phys. Rev. Lett. 43, 181 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Blanchet, T. Damour, G. Schäfer, Mon. Not. R. Astron. Soc. 242, 289 (1990)

    ADS  MATH  Google Scholar 

  10. S. Chandrasekhar, Astrophys. J. 142, 1488 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Damour, Gravitational radiation and the motion of compact bodies, in Gravitational Radiation, ed. by N. Deruelle, T. Piran (North-Holland, Amsterdam, 1983)

    Google Scholar 

  12. L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 5, 3 (2002). http://www.livingreviews.org/Articles/lrr-2002-3

    ADS  Google Scholar 

  13. M.E. Pati, C.M. Will, Phys. Rev. D 62, 124015 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. M.E. Pati, C.M. Will, Phys. Rev. D 65, 104008 (2002). gr-qc/0201001

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Schäfer, Gen. Relativ. Gravit. 18, 255 (1986)

    Article  ADS  Google Scholar 

  16. T. Damour, P. Jaranowski, G. Schäfer, Phys. Rev. D 62, 021501 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Damour, Gravitational radiation reaction in the binary pulsar and the quadrupole formula controversy, in Proceedings of Journées Relativistes 1983, ed. by S. Benenti, M. Ferraris, M. Francavighia (Pitagora Editrice, Bologna, 1985)

    Google Scholar 

  18. T. Damour, Phys. Rev. Lett. 51, 1019 (1983)

    Article  ADS  Google Scholar 

  19. R.A. Hulse, J.H. Taylor, Astrophys. J. 195, L51 (1975)

    Article  ADS  Google Scholar 

  20. J.H. Taylor, Millisecond pulsars: nature’s most stable clocks. Proc. IEEE 79, 1054 (1991)

    Article  ADS  Google Scholar 

  21. C.M. Will, Ann. Phys. 155, 133 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  22. R. Blandford, S.A. Teukolsky, Astrophys. J. 205, 580 (1976)

    Article  ADS  Google Scholar 

  23. T. Damour, N. Deruelle, Ann. Inst. Henri Poincaré. Phys. Théor. 43, 107 (1985)

    MathSciNet  MATH  Google Scholar 

  24. T. Damour, N. Deruelle, Ann. Inst. Henri Poincaré. Phys. Théor. 44, 263 (1986)

    MathSciNet  MATH  Google Scholar 

  25. T. Damour, J.H. Taylor, Phys. Rev. D 45, 1840 (1992)

    Article  ADS  Google Scholar 

  26. J.H. Taylor, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 341, 117 (1992)

    Article  ADS  Google Scholar 

  27. J.M. Weisberg, J.H. Taylor, The relativistic binary pulsar B 1913+16, in Proceedings of Binary Pulsars, ed. by D.J. Nice, S.E. Thorsett, Chania, Crete, 2002. ASP Conference Series, vol. 302, ed. by M. Bailes, D.J. Nice, S.E. Thorsett (Astronomical Society of the Pacific, San Francisco, 2003). astro-ph/0211217

    Google Scholar 

  28. M. Weisberg, D.J. Nice, J.H. Taylor, Astrophys. J. 722, 1030 (2010). arXiv:1011.0718

    Article  ADS  Google Scholar 

  29. T. Damour, J.H. Taylor, Astrophys. J. 366, 501 (1991)

    Article  ADS  Google Scholar 

  30. L.L. Smarr, R. Blandford, Astrophys. J. 207, 574 (1976)

    Article  ADS  Google Scholar 

  31. A. Wolszczan, Nature 350, 688 (1991)

    Article  ADS  Google Scholar 

  32. I.H. Stairs, S.E. Thorsett, J.H. Taylor, A. Wolszczan, Astrophys. J. 581, 501 (2002). astro-ph/0208357

    Article  ADS  Google Scholar 

  33. I.H. Stairs, E.M. Splaver, S.E. Thorsett, D.J. Nice, J.H. Taylor, Mon. Not. R. Astron. Soc. 314, 459 (2000)

    Article  ADS  Google Scholar 

  34. J.H. Taylor, J.M. Cordes, Astrophys. J. 411, 674 (1993)

    Article  ADS  Google Scholar 

  35. T. Damour, G. Esposito-Farèse, Phys. Rev. D 54, 1474 (1996)

    Article  ADS  Google Scholar 

  36. T. Damour, G. Esposito-Farèse, Phys. Rev. D 58, 042001 (1998)

    Article  ADS  Google Scholar 

  37. A.G. Lyne et al., Science 303, 1153 (2004)

    Article  ADS  Google Scholar 

  38. M. Burgay et al., Nature 426, 531 (2003)

    Article  ADS  Google Scholar 

  39. R.P. Breton et al., Science 321, 104 (2008). arXiv:0807.2644

    Article  ADS  Google Scholar 

  40. M. Kramer, N. Wex, Class. Quantum Gravity 26, 073001 (2009)

    Article  ADS  Google Scholar 

  41. M. Lyutikov, C. Thompson, Astrophys. J. 634, 1223 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Straumann, N. (2013). The Post-Newtonian Approximation. In: General Relativity. Graduate Texts in Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5410-2_6

Download citation

Publish with us

Policies and ethics