Skip to main content

Efficiency and Precise Interaction for Multibody Simulations in Augmented Reality

  • Chapter
Book cover Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 28))

Abstract

In this chapter, an enhanced methodology for interactive, accurate, fast and robust multibody simulations using Augmented Reality is presented and discussed. This methodology is based on the integration of a mechanical tracker and a dedicated impulse based solver. The use of the mechanical tracker for the interaction between the user and the simulation allows to separate the processing of the data coming from the position tracking from those coming from the image collimation processing. By this way simulation results and visualization remain separated and the precision is enhanced. The use of a dedicated sequential impulse solver allows a quick and stable simulation also for a large number of bodies and overabundant constraints. The final result of this work is a software tool able to manage real time dynamic simulations and update the augmented scene accordingly. The robustness and the reliability of the system will be checked over two test cases: a ten pendula dynamic system and of a cross-lift mechanism simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ARToolkit libraries can be freely downloaded from the Internet site http://sourceforge.net/project/showfiles.php?group_id=116280.

  2. 2.

    http://www.hitl.washington.edu/artoolkit/.

  3. 3.

    The library can be freely downloaded from the Internet site http://openvrml.org/.

References

  1. Azuma, R., Baillot, Y., et al.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  2. Gattamelata, D., Pezzuti, E., Valentini, P.P.: A CAD system in augmented reality application. In: Proc. of 20th European Modeling and Simulation Symposium, Track on Virtual Reality and Visualization, Briatico (CS), Italy (2008)

    Google Scholar 

  3. Valentini, P.P.: Augmented reality and reverse engineering tools to support acquisition, processing and interactive study of archaeological heritage. In: Virtual Reality. Nova Publ., New York (2011)

    Google Scholar 

  4. Raghavan, V., Molineros, J., Sharma, R.: Interactive evaluation of assembly sequences using augmented reality. IEEE Trans. Robot. Autom. 15(3), 435–449 (1999)

    Article  Google Scholar 

  5. Pang, Y., Nee, A.Y.C., Ong, S.K., Yuan, M.L., Youcef-Toumi, K.: Assembly feature design in an augmented reality environment. Assem. Autom. 26(1), 34–43 (2006)

    Article  Google Scholar 

  6. Valentini, P.P.: Interactive virtual assembling in augmented reality. Int. J. Interact. Des. Manuf. 3, 109–119 (2009)

    Article  Google Scholar 

  7. Valentini, P.P.: Interactive cable harnessing in augmented reality. Int. J. Interact. Des. Manuf. 5(1), 45–53 (2011)

    Article  Google Scholar 

  8. Gattamelata, D., Pezzuti, E., Valentini, P.P.: Virtual engineering in augmented reality. In: Computer Animation, pp. 57–84. Nova Publ., New York (2010)

    Google Scholar 

  9. Valentini, P.P.: Enhancing user role in augmented reality interactive simulations. In: Human Factors in Augmented Reality Environments. Springer, Berlin (2012)

    Google Scholar 

  10. Buchanan, P., Seichter, H., Billinghurst, M., Grasset, R.: Augmented reality and rigid body simulation for edutainment: the interesting mechanism—an AR puzzle to teach Newton physics. In: Proc. of the International Conference on Advances in Computer Entertainment Technology, Yokohama, Japan, pp. 17–20 (2008)

    Chapter  Google Scholar 

  11. Chae, C., Ko, K.: Introduction of physics simulation in augmented reality. In: Proc. of the 2008 International Symposium on Ubiquitous Virtual Reality, ISUVR, pp. 37–40. IEEE Comput. Soc., Washington (2008)

    Chapter  Google Scholar 

  12. Kaufmann, H., Meyer, B.: Simulating educational physical experiments in augmented reality. In: ACM SIGGRAPH Asia (2008)

    Google Scholar 

  13. Irawati, S., Hong, S., Kim, J., Ko, H.: 3D edutainment environment: learning physics through VR/AR experiences. In: Proc. of the International Conference on Advances in Computer Entertainment Technology, pp. 21–24 (2008)

    Chapter  Google Scholar 

  14. Mac Namee, B., Beaney, D., Dong, Q.: Motion in augmented reality games: an engine for creating plausible physical interactions in augmented reality games. Int. J. Comput. Games Technol. 2010, 979235 (2010)

    Google Scholar 

  15. Valentini, P.P., Pezzuti, E.: Interactive multibody simulation in augmented reality. J. Theor. Appl. Mech. 48(3), 733–750 (2010)

    Google Scholar 

  16. Azuma, R.T.: Tracking requirements for augmented reality. Commun. ACM 36(7), 50–51 (1993)

    Article  Google Scholar 

  17. Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. Ph.D. thesis, University of California, Berkeley (1996)

    Google Scholar 

  18. Schmitt, A., Bender, J.: Impulse-based dynamic simulation of multibody systems: numerical comparison with standard methods. In: Proc. Automation of Discrete Production Engineering, pp. 324–329 (2005)

    Google Scholar 

  19. Schmitt, A., Bender, J., Prautzsch, H.: On the convergence and correctness of impulse-based dynamic simulation. Internal report 17, Institut für Betriebs- und Dialogsysteme (2005)

    Google Scholar 

  20. Jaimes, A., Sebe, N.: Multimodal human-computer interaction: a survey. Comput. Vis. Image Underst. 108(1–2), 116–134 (2007)

    Article  Google Scholar 

  21. Ullmer, B., Ishii, H.: Emerging frameworks for tangible user interfaces. IBM Syst. J. 39(3–4), 915–931 (2000)

    Article  Google Scholar 

  22. Fiorentino, M., Monno, G., Uva, A.E.: Tangible digital master for product lifecycle management in augmented reality. Int. J. Interact. Des. Manuf. 3(2), 121–129 (2009)

    Article  Google Scholar 

  23. Slay, H., Thomas, B., Vernik, R.: Tangible user interaction using augmented reality. In: Proceedings of the 3rd Australasian Conference on User Interfaces, Melbourne, Victoria, Australia (2002)

    Google Scholar 

  24. Valentini, P.P., Pezzuti, E.: Dynamic splines for interactive simulation of elastic beams in augmented reality. In: Proc. of IMPROVE 2011 International Congress, Venice, Italy (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Valentini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mariti, L., Valentini, P.P. (2013). Efficiency and Precise Interaction for Multibody Simulations in Augmented Reality. In: Samin, JC., Fisette, P. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5404-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5404-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5403-4

  • Online ISBN: 978-94-007-5404-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics