Skip to main content

Efficient Coarse-Grained Molecular Simulations in the Multibody Dynamics Scheme

  • Chapter
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 28))

Abstract

The numerical simulation of highly complex biomolecular systems such as DNAs, RNAs, and proteins become intractable as the size and fidelity of these systems increase. Herein, efficient techniques to accelerate multibody-based coarse-grained simulations of such systems are presented. First, an adaptive coarse-graining framework is explained which is capable of determining when and where the system model needs to change to achieve an optimal combination of speed and accuracy. The metrics to guide these on-the-fly instantaneous model adjustments and the issues associated with post-transition system’s states are addressed in this book chapter. Due to its highly modular and parallel nature, the Generalized Divide-and-Conquer Algorithm (GDCA) forms the bases for a suite of dynamics simulation tools used in this work. For completeness, the fundamental aspects of the GDCA are presented herein. Finally, a novel method for the efficient and accurate approximation of far-field force and moment terms are developed. This aspect is key to the success of any large molecular simulation since more than 90 % of the computational load in such simulations is associated with pairwise force calculations. The presented approximations are efficient, accurate, and highly compatible with multibody-based coarse-grained models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abagyan, R., Mazur, A.: New methodology for computer-aided modeling of biomolecular structure and dynamics. 2. Local deformations and cycles. J. Comput. Phys. 6(4), 833–845 (1989)

    Google Scholar 

  2. Anderson, K.S.: Recursive derivation of explicit equations of motion for efficient dynamic/control simulation of large multibody systems. Ph.D. thesis, Stanford University (1990)

    Google Scholar 

  3. Anderson, K.S., Poursina, M.: Energy concern in biomolecular simulations with transition from a coarse to a fine model. In: Proceedings of the Seventh International Conference on Multibody Systems, Nonlinear Dynamics and Control, ASME Design Engineering Technical Conference 2009 (IDETC09), IDETC2009/MSND-87297, San Diego, CA (2009)

    Google Scholar 

  4. Anderson, K.S., Poursina, M.: Optimization problem in biomolecular simulations with DCA-based modeling of transition from a coarse to a fine fidelity. In: Proceedings of the Seventh International Conference on Multibody Systems, Nonlinear Dynamics and Control, ASME Design Engineering Technical Conference 2009 (IDETC09), IDETC2009/MSND-87319, San Diego, CA (2009)

    Google Scholar 

  5. Appel, A.W.: An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput. 6(1), 85–103 (1985)

    Article  MathSciNet  Google Scholar 

  6. Armstrong, W.W.: Recursive solution to the equations of motion of an n-link manipulator. In: Fifth World Congress on the Theory of Machines and Mechanisms, vol. 2, pp. 1342–1346 (1979)

    Google Scholar 

  7. Avello, A., Jiménez, J.M., Bayo, E., García de Jalón, J.: A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput. Methods Appl. Mech. Eng. 107(3), 313–339 (1993)

    Article  MATH  Google Scholar 

  8. Bae, D.S., Haug, E.J.: A recursive formation for constrained mechanical system dynamics: Part I. Open loop systems. Mech. Struct. Mach. 15(3), 359–382 (1987)

    Article  Google Scholar 

  9. Bae, D.S., Kuhl, J.G., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: Part III. Parallel processor implementation. Mech. Based Des. Struct. Mach. 16(2), 249–269 (1988)

    Google Scholar 

  10. Barns, J., Hut, P.: A hierarchical o(nlogn) force-calculation algorithm. Lett. Nature 324(4), 446–449 (1986)

    Article  Google Scholar 

  11. Becker, N.B., Everaers, R.: From rigid base pairs to semiflexible polymers: coarse-graining DNA. Phys. Rev. E 76(2), 021923 (2007)

    Article  Google Scholar 

  12. Bhalerao, K., Anderson, K.: Modeling intermittent contact for flexible multibody-rigid-body dynamics. Nonlinear Dyn. 60(1–2), 63–79 (2010)

    Article  MATH  Google Scholar 

  13. Bhalerao, K.D.: On methods for efficient and accurate design and simulation of multibody systems. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy (2010)

    Google Scholar 

  14. Bhalerao, K.D., Poursina, M., Anderson, K.S.: An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody Syst. Dyn. 23(2), 121–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brandl, H., Johanni, R., Otter, M.: A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In: IFAC/IFIP/IMACS Symposium, Vienna, Austria, pp. 95–100 (1986)

    Google Scholar 

  16. Chakrabarty, A., Cagin, T.: Coarse grain modeling of polyimide copolymers. Polymer 51(12), 2786–2794 (2010)

    Article  Google Scholar 

  17. Chen, S.J.: RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu. Rev. Biophys. 37(1), 197–214 (2008)

    Article  Google Scholar 

  18. Chirikjian, G.S., Wang, Y.: Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups. Phys. Rev. E 62(1), 880–892 (2000)

    Article  Google Scholar 

  19. Chun, H.M., Padilla, C.E., Chin, D.N., Watenabe, M., Karlov, V.I., Alper, H.E., Soosaar, K., Blair, K.B., Becker, O.M., Caves, L.S.D., Nagle, R., Haney, D.N., Farmer, B.L.: MBO(N)D: a multibody method for long-time molecular dynamics simulations. J. Comput. Chem. 21(3), 159–184 (2000)

    Article  Google Scholar 

  20. Chung, S., Haug, E.J.: Real-time simulation of multibody dynamics on shared memory multiprocessors. J. Dyn. Syst. Meas. Control 115(4), 627–637 (1993)

    Article  MATH  Google Scholar 

  21. de Leeuw, S., Perram, J., Smith, E.: Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. Lond. Ser. A 373(1752), 27–56 (1980)

    Article  Google Scholar 

  22. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem. Annu. Rev. Biophys. 37(1), 289–316 (2008)

    Article  Google Scholar 

  23. Ding, H.Q., Karasawa, N., Goddard, W.A. III: Atomic level simulation on a million particles: the cell multipole method for Coulomb and London nonbond interactions. J. Chem. Phys. 97(6), 4309–4315 (1992)

    Article  Google Scholar 

  24. Ewald, P.: Evaluation of optical and electrostatic lattice potentials. Ann. Phys. 64, 253–287 (1921)

    Article  MATH  Google Scholar 

  25. Featherstone, R.: The calculation of robotic dynamics using articulated body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)

    Article  Google Scholar 

  26. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, Boston (1987)

    Google Scholar 

  27. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log(n)) calculation of rigid body dynamics. Part 1: Basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999)

    Article  Google Scholar 

  28. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log(n)) calculation of rigid body dynamics. Part 2: Trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999)

    Article  Google Scholar 

  29. Fijany, A., Bejczy, A.K.: Techniques for parallel computation of mechanical manipulator dynamics. Part II: Forward dynamics. In: Leondes, C. (ed.) Advances in Robotic Systems and Control, vol. 40, pp. 357–410. Academic Press, San Diego (1991)

    Google Scholar 

  30. Fijany, A., Sharf, I., D’Eleuterio, G.M.T.: Parallel O(logn) algorithms for computation of manipulator forward dynamics. IEEE Trans. Robot. Autom. 11(3), 389–400 (1995)

    Article  Google Scholar 

  31. Freddolino, P.L., Arkhipov, A., Shih, A.Y., Yin, Y., Chen, Z., Schulten, K.: Application of residue-based and shape-based coarse graining to biomolecular simulations. In: Voth, G.A. (ed.) Coarse-Graining of Condensed Phase and Biomolecular Systems, pp. 299–315. CRC Press, Boca Raton (2008)

    Google Scholar 

  32. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 135(2), 280–292 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Haile, J.: Molecular Dynamics Simulation: Elementary Methods. Wiley Interscience, New York (1992)

    Google Scholar 

  34. Hwang, R.S., Bae, D., Kuhl, J.G., Haug, E.J.: Parallel processing for real-time dynamics systems simulations. J. Mech. Des. 112(4), 520–528 (1990)

    Article  Google Scholar 

  35. Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14(3), 531–542 (1991)

    Article  MATH  Google Scholar 

  36. Jain, A., Vaidehi, N., Rodriguez, G.: A fast recursive algorithm for molecular dynamics simulation. J. Comput. Phys. 106(2), 258–268 (1993)

    MATH  Google Scholar 

  37. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw-Hill, New York (1985)

    Google Scholar 

  38. Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill, New York (1983)

    Google Scholar 

  39. Kasahara, H., Fujii, H., Iwata, M.: Parallel processing of robot motion simulation. In: Proceedings IFAC 10th World Conference (1987)

    Google Scholar 

  40. Kazerounian, K., Latif, K., Alvarado, C.: Protofold: a successive kinetostatic compliance method for protein conformation prediction. J. Mech. Des. 127(4), 712–718 (2005)

    Article  Google Scholar 

  41. Khan, I., Poursina, M., Anderson, K.S.: DCA-based optimization in transitioning to finer models in articulated multi-flexible-body modeling of biopolymers. In: Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics, Brussels, Belgium (2011)

    Google Scholar 

  42. Lathrop, L.H.: Parallelism in manipulator dynamics. Int. J. Robot. Res. 4(2), 80–102 (1985)

    Article  Google Scholar 

  43. Leach, A.R.: Molecular Modelling Principles and Applications, 2nd edn. Prentice Hall, New York (2001)

    Google Scholar 

  44. Lebrun, A., Lavery, R.: Modeling the mechanics of a DNA oligomer. J. Biomol. Struct. Dyn. 16(3), 593–604 (1998)

    Article  Google Scholar 

  45. Luh, J.S.Y., Walker, M.W., Paul, R.P.C.: On-line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102(2), 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  46. Malczyk, P., Fraczek, J.: Lagrange multipliers based divide and conquer algorithm for dynamics of general multibody systems. In: Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics, Warsaw, Poland (2009)

    Google Scholar 

  47. Malczyk, P., Fraczek, J.C.: Parallel index-3 formulation for real-time multibody dynamics simulations. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland (2010)

    Google Scholar 

  48. Marrink, S.J., de Vries, A.H., Mark, A.E.: Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108, 750–760 (2004)

    Article  Google Scholar 

  49. Mukherjee, R., Anderson, K.S.: A logarithmic complexity divide-and-conquer algorithm for multi-flexible articulated body systems. J. Comput. Nonlinear Dyn. 2(1), 10–21 (2007)

    Article  MathSciNet  Google Scholar 

  50. Mukherjee, R., Anderson, K.S.: An orthogonal complement based divide-and-conquer algorithm for constrained multibody systems. Nonlinear Dyn. 48(1–2), 199–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mukherjee, R.M.: Multibody dynamics algorithm development and multiscale modelling of materials and biomolecular systems. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy (2007)

    Google Scholar 

  52. Mukherjee, R.M., Anderson, K.S.: Efficient methodology for multibody simulations with discontinuous changes in system definition. Multibody Syst. Dyn. 18(2), 145–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mukherjee, R.M., Bhalerao, K.D., Anderson, K.S.: A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Struct. Multidiscip. Optim. 35(5), 413–429 (2007)

    Article  MathSciNet  Google Scholar 

  54. Neilan, P.E.: Efficient computer simulation of motions of multibody systems. Ph.D. thesis, Stanford University (1986)

    Google Scholar 

  55. Niedermeier, C., Tavan, P.: A structure adapted multipole method for electrostatic interactions in protein dynamics. J. Chem. Phys. 101(1), 734–748 (1994)

    Article  Google Scholar 

  56. Parisien, M., Major, F.: The MC-fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183), 51–55 (2008)

    Article  Google Scholar 

  57. Poursina, M.: Robust framework for the adaptive multiscale modeling of biopolymers. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy (2011)

    Google Scholar 

  58. Poursina, M., Anderson, K.S.: Constant temperature simulation of articulated polymers using divide-and-conquer algorithm. In: Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics, Brussels, Belgium (2011)

    Google Scholar 

  59. Poursina, M., Anderson, K.S.: Multibody dynamics in generalized divide and conquer algorithm (GDCA) scheme. In: Proceedings of the Eighths International Conference on Multibody Systems, Nonlinear Dynamics and Control, ASME Design Engineering Technical Conference 2011 (IDETC11), DETC2011-48383, Washington, DC (2011)

    Google Scholar 

  60. Poursina, M., Anderson, K.S.: An extended divide-and-conquer algorithm for a generalized class of multibody constraints. Multibody Syst. Dyn. (2012). doi:10.1007/s11044-012-9324-9

    Google Scholar 

  61. Poursina, M., Anderson, K.S.: Long-range force and moment in multiresolution simulation of molecular systems. J. Comput. Phys. 231(21), 7237–7254 (2012)

    Article  Google Scholar 

  62. Poursina, M., Bhalerao, K.D., Anderson, K.S.: Energy concern in biomolecular simulations with discontinuous changes in system definition. In: Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics, Warsaw, Poland (2009)

    Google Scholar 

  63. Poursina, M., Bhalerao, K.D., Flores, S., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. Methods Enzymol. 487, 73–98 (2011)

    Article  Google Scholar 

  64. Poursina, M., Khan, I., Anderson, K.S.: Model transitions and optimization problem in multi-flexible-body modeling of biopolymers. In: Proceedings of the Eighths International Conference on Multibody Systems, Nonlinear Dynamics and Control, ASME Design Engineering Technical Conference 2011 (IDETC11), DETC2011-48383, Washington, DC (2011)

    Google Scholar 

  65. Poursina, M., Laflin, J., Anderson, K.S.: Fast electrostatic force and moment calculations in multibody-based simulations of coarse-grained biopolymers. In: Proceedings of the Eighths International Conference on Multibody Systems, Nonlinear Dynamics and Control, ASME Design Engineering Technical Conference 2011 (IDETC11), DETC2011-48383, Washington, DC (2011)

    Google Scholar 

  66. Praprotnik, M., Site, L., Kremer, K.: Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J. Chem. Phys. 123(22), 224106–224114 (2005)

    Article  Google Scholar 

  67. Redon, S., Lin, M.C.: An efficient, error-bounded approximation algorithm for simulating quasi-statics of complex linkages. Comput. Aided Des. 38(4), 300–314 (2006)

    Article  Google Scholar 

  68. Rosenthal, D.: An order n formulation for robotic systems. J. Astronaut. Sci. 38(4), 511–529 (1990)

    Google Scholar 

  69. Rosenthal, D.E., Sherman, M.A.: High performance multibody simulations via symbolic equation manipulation and Kane’s method. J. Astronaut. Sci. 34(3), 223–239 (1986)

    Google Scholar 

  70. Rossi, R., Isorce, M., Morin, S., Flocard, J., Arumugam, K., Crouzy, S., Vivaudou, M., Redon, S.: Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. In: ISMB/ECCB (Supplement of Bioinformatics), vol. 23, pp. 408–417 (2007)

    Google Scholar 

  71. Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58(1), 57–83 (2007)

    Article  Google Scholar 

  72. Shahbazi, Z., Ilies, H., Kazerounian, K.: Hydrogen bonds and kinematic mobility of protein molecules. J. Mech. Robot. 2(2), 021009 (2010)

    Article  Google Scholar 

  73. Shillcocka, J.C., Lipowsky, R.: Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J. Chem. Phys. 117, 5048–5061 (2002)

    Article  Google Scholar 

  74. Tozzini, V.: Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15(2), 144–150 (2005)

    Article  Google Scholar 

  75. Vaidehi, N., Jain, A., Goddard, W.A. III: Constant temperature constrained molecular dynamics: the Newton-Euler inverse mass operator method. J. Phys. Chem. 100(25), 10508–10517 (1996)

    Article  Google Scholar 

  76. Vereshchagin, A.F.: Computer simulation of the dynamics of complicated mechanisms of robot-manipulators. Eng. Cybern. 12(6), 65–70 (1974)

    Google Scholar 

  77. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. J. Dyn. Syst. Meas. Control 104(3), 205–211 (1982)

    Article  MATH  Google Scholar 

  78. Wehage, R.A., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work received under National Science Foundation through award No. 0757936 is gratefully acknowledged. The author would like to thank Professor Alain Laederach from the University of North Carolina, Mr. Michael Sherman from Simbios: NIH Center for Biomedical Computation at Stanford University, and Dr. Kishor Bhalerao from the University of Melbourne for several useful discussions. They also would like to thank Jeremy Laflin who independently validated some of the simulation results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Poursina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Poursina, M., Anderson, K.S. (2013). Efficient Coarse-Grained Molecular Simulations in the Multibody Dynamics Scheme. In: Samin, JC., Fisette, P. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5404-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5404-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5403-4

  • Online ISBN: 978-94-007-5404-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics