Advertisement

A Review on CAD Tools for Burn Diagnosis

  • Aurora Sáez
  • Carmen Serrano
  • Begoña Acha
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 6)

Abstract

A correct first treatment is essential for a favorable evolution of a burn injury. To know the depth of the burn is necessary to develop an appropriate course of treatment: correct visual assessment of burn depth relies highly on specialized dermatological expertise. The cost of maintaining a burn treatment unit is high, therefore it would be desirable to have an automatic system to give a first assessment at primary health-care centers, where there is a lack of specialists. The aim of the system is to separate burn wounds from healthy skin, and to distinguish among different types of burn depth. Digital color photographs are used as inputs to the system. Firstly, some topics related to image acquisition will be addressed. A method to normalize colors when photographs have been acquired with different cameras and/or illuminant conditions is described. Secondly, a comparative of several color segmentation algorithms will be presented. Finally, to estimate the burn depth a classification method, that take into account different color-texture features extracted from the burn images, will be described.

Keywords

Feature Selection Fuzzy Cluster Algorithm Burn Unit Sequential Forward Selection Minimum Classification Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acha B (2002) Segmentación y clasificación de imágenes en color. Aplicación al diagnóstico de quemaduras. PhD Thesis. Spain: University of Seville Google Scholar
  2. 2.
    Acha B, Serrano C, Palencia S, Murillo JJ (2004) Classification of burn wounds using support vector machines. Proc SPIE Int Soc Opt Eng 5370:1018–1025 Google Scholar
  3. 3.
    Acha B, Serrano C, Acha JI, Roa LM (2005) Segmentation and classification of burn images by color and texture information. J Biomed Opt 10(3):1–11 CrossRefGoogle Scholar
  4. 4.
    Afromowitz MA, Van Liew GS, Heimbach DM (1997) Clinical evaluation of burn injuries using an optical reflectance technique. IEEE Trans Biomed Eng 34:114–127 CrossRefGoogle Scholar
  5. 5.
    Afromowitz MA, Callis JB, Heimbach DM, DeSoto LA, Norton MK (1988) Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth. IEEE Trans Biomed Eng 35:842–850 CrossRefGoogle Scholar
  6. 6.
    Alonso Betanzos A, Arcay Varela B, Castro Martinez A (2000) Analysis and evaluation of hard and fuzzy clustering segmentation techniques in burned patient images. Image Vis Comput 18(13):1045–1054 CrossRefGoogle Scholar
  7. 7.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:2 CrossRefGoogle Scholar
  8. 8.
    Carpenter GA, Grossberg S, Markuzon S, Reynolds JH (1992) Fuzzy-ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Netw 5:698–713 CrossRefGoogle Scholar
  9. 9.
    Castro A, Bóveda C, Arcay B (2006) Analysis of fuzzy clustering algorithms for the segmentation of burn wounds photographs. Lect Notes Comput Sci 4142:491–501 CrossRefGoogle Scholar
  10. 10.
    Clarke JA (1992) A colour atlas of burn injuries. Chapman & Hall Medical, London Google Scholar
  11. 11.
    Cole RP, Jones SG, Shakespeare PG (1990) Thermographic assessment of hand burns. Burns 16(1):60–63 CrossRefGoogle Scholar
  12. 12.
    Doi K (2006) Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 51(13):R5–R27 CrossRefGoogle Scholar
  13. 13.
    Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4–5):198–211 CrossRefGoogle Scholar
  14. 14.
    Donohoe GW, Nemeth S, Soliz P (1998) ART-based image analysis for pigmented lesions of the skin. In: 11th IEEE symposium on computer-based medical systems, pp 293–298 Google Scholar
  15. 15.
    Fondón I, Acha B, Serrano C, Sosa M (2006) New characteristics for the classification of burns: experimental study. Lect Notes Comput Sci 4142:502–512 CrossRefGoogle Scholar
  16. 16.
    Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Morgan Kaufmann, San Diego zbMATHGoogle Scholar
  17. 17.
    Ganster H, Pinz A, Röhrer R, Wilding E, Binder M, Kittler H (2001) Automated melanoma recognition. IEEE Trans Med Imaging 3:233–239 CrossRefGoogle Scholar
  18. 18.
    Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 11(7):773–780 CrossRefGoogle Scholar
  19. 19.
    Huang SY, Macpherson E, Zhang YT (2007) A feasibility study of burn wound depth assessment using terahertz pulsed imaging. In: Proceedings of the 4th IEEE-EMBS international summer school and symposium on medical devices and biosensors, ISSS-MDBS 2007, pp 132–135 CrossRefGoogle Scholar
  20. 20.
    Lim YW, Lee SU (1990) On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognit 23(9):935–952 CrossRefGoogle Scholar
  21. 21.
    Lucchese L, Mitra SK (2001) Color segmentation based on separate anisotropic diffusion of chromatic and achromatic channels. IEEE Proc Vis Image Signal Process 148(3):141–150 CrossRefGoogle Scholar
  22. 22.
    McLaren K (1976) The development of the CIE 1976 (l*a*b*) uniform colourspace and colour-difference formula. J Soc Dyers Colour 92:338–341 CrossRefGoogle Scholar
  23. 23.
    Monstrey SM, Hoeksema H, Baker RD, Jeng J, Spence RS, Wilson D, Pape SA (2011) Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns 37(2):249–256 CrossRefGoogle Scholar
  24. 24.
    Niazi ZBM, Essex TJH, Papini R, Scott D, McLean NR, Black JM (1993) New laser Doppler scanner, a valuable adjunct in burn depth assessment. Burns 19(6):485–489 CrossRefGoogle Scholar
  25. 25.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639 CrossRefGoogle Scholar
  27. 27.
    Pierce MC, Sheridan RL, Park BH, Cense B, De Boer JF (2003) Burn depth determination in human skin using polarization-sensitive optical coherence tomography. Proc SPIE Int Soc Opt Eng 4956:263–270 Google Scholar
  28. 28.
    Plataniotis KN, Venetsanopoulos AN (2000) Color image processing and applications. Springer, Berlin Google Scholar
  29. 29.
    Rangayyan RM (2005) Biomedical image analysis. CRC, Boca Raton Google Scholar
  30. 30.
    Rangayyan RM, Acha B, Serrano C (2011) Color image processing with biomedical applications. SPIE press monograph, vol PM206 CrossRefGoogle Scholar
  31. 31.
    Renkielska A, Nowakowski A, Kaczmarek M, Ruminski J (2006) Burn depths evaluation based on active dynamic IR thermal imaging-A preliminary study. Burns 32(7):867–875 CrossRefGoogle Scholar
  32. 32.
    Roa L, Gómez-Cía T, Acha B, Serrano C (1999) Digital imaging in remote diagnosis of burns. Burns 25(7):617–623 CrossRefGoogle Scholar
  33. 33.
    Romero-Méndez R, Jiménez-Lozano JN, Sen M, Javier González F (2009) Analytical solution of the Pennes equation for burn-depth determination from infrared thermographs. Math Med Biol 27(1):21–38 CrossRefGoogle Scholar
  34. 34.
    Ruminski J, Kaczmarek M, Renkielska A, Nowakowski A (2007) Thermal parametric imaging in the evaluation of skin burn depth. IEEE Trans Biomed Eng 54(2):303–312. Art. no. 14 CrossRefGoogle Scholar
  35. 35.
    Sáez A, Acha B, Serrano C (2009) Colorimetric calibration of images captured under unknown illuminants. In: Proceedings of the 11th congress of the international colour association (Aic), Sidney, Australia Google Scholar
  36. 36.
    Serrano C, Roa L, Acha B (1998) Evaluation of a telemedicine platform in a burn unit. In: Proceedings of the IEEE international conference on information technology applications in biomedicine, Washington, DC, pp 121–126 Google Scholar
  37. 37.
    Serrano C, Acha B, Gómez-Cía T, Acha JI, Roa LM (2005) A computer assisted diagnosis tool for the classification of burns by depth of injury. Burns 31(3):275–281 CrossRefGoogle Scholar
  38. 38.
    Serrano C, Acha B, Sangwine SJ (2005) Colorimetric calibration of images of human skin captured under hospital conditions. In: Proceedings of the 10th congress of the international colour association AIC, Granada, Spain, vol 1, pp 773–776 Google Scholar
  39. 39.
    Tannenbaum B (2007) Webinar color image processing with MATLAB. June 28th Google Scholar
  40. 40.
    Vapnik V (1995) The nature of statistical learning theory. Springer, New York zbMATHGoogle Scholar
  41. 41.
    Wu Z, Xie W, Yu J (2003) Fuzzy C-means clustering algorithm based on kernel method. In: Computational intelligence and multimedia applications, ICCIMA, pp 49–54 Google Scholar
  42. 42.
    Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recognit 29(8):1335–1346 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dpto. Teoría de la señal y comunicacionesE.T.S. de IngenieríaSevillaSpain

Personalised recommendations