Advertisement

On Boundaries of the Language of Physics

  • Ladislav KvaszEmail author
Chapter
Part of the History of Mechanism and Machine Science book series (HMMS, volume 16)

Abstract

The aim of the present paper is to outline a method of reconstruction of the historical development of the language of physical theories. We will apply the theory presented in Patterns of Change, Linguistic Innovations in the Development of Classical Mathematics to the analysis of linguistic innovations in physics. Our method is based on a reconstruction of the following potentialities of language: analytical power, expressive power, integrative power, and explanatory power, as well as analytical boundaries and expressive boundaries. One of the results of our reconstruction is a new interpretation of Kant's antinomies of pure reason. If we relate Kant’s antinomies to the language, they retain validity.

Keywords

Expressive Power Classical Physic Newtonian Mechanic Analytical Boundary Integrative Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The paper is an outcome of the research project P401/11/0371 Apriority, Syntheticity and Analyticity from Medieval Thought to Contemporary Philosophy provided by the Grant Agency of the Czech Republic for the years 2011–2015 and was written in the framework of the Fellowship Jan Evangelista Purkyne in the Institute of Philosophy of the Academy of Sciences of Czech Republic.

References

  1. Boltzmann L (1909) Wissenschaftliche Abhandlungen. In: Hasenohrl F (ed) Leipzig. [Reprinted, New York–Chelsea, 1969]Google Scholar
  2. Boltzmann L (1877) Ueber die beziehung zwischen dem zweiten Haubtsatze der mechanischen wärmetheorie und der Wahrscheinlichkeitsrechnung. Wiener Berichte 76:373–435. [Reprinted in (Boltzmann 1909) vol II, paper 42]Google Scholar
  3. Carnot S ([1824] 1986) Reflexions on the motive power of fire. Fox R (ed). The Manchester University Press, ManchesterGoogle Scholar
  4. Clausius R (1865) Über die Wärmeleitung gasförmiger Körper. Annalen der Physik 125:353–400ADSCrossRefGoogle Scholar
  5. Descartes R ([1637] 1965) Discourse on method, optics, geometry, and meteorology. Boobs-Merrill, IndianapolisGoogle Scholar
  6. Descartes R ([1644] 1983) Principles of philosophy. Reidel, DordrechtGoogle Scholar
  7. Drake S (1957) Discoveries and opinions of Galileo. Doubleday Anchor Books, New YorkGoogle Scholar
  8. Euler L (1911–1957) Opera Omnia, 46 vols. Teubner et Fussli O, Leipzig/Berlin/ZurichGoogle Scholar
  9. Euler L (1750) Découvert d’un principe de Mécanique. Mémoires de l’academie des sciences de Berlin 6:185–217; see also In: Opera Omnia II 5:81–108Google Scholar
  10. Euler L ([1736] 1938) Mechanica sive motus scientia analytice exposita. Russian translation: Mechanika. GRTTL, MoscowGoogle Scholar
  11. Faraday M ([1831] 1955) Experimental researches in electricity. In: Hutchings M (ed) The great books of the western world. Encyclopaedia Britannica Inc, LondonGoogle Scholar
  12. Fourier J ([1822] 1955) The analytical theory of heat. Dover, New YorkzbMATHGoogle Scholar
  13. Frege G ([1891] 1989) Funktion und Begriff. Jena. Reprint in: Funktion, Begriff, Bedeutung. Vandenhoeck & Ruprecht, Göttingen, pp 17–39Google Scholar
  14. Galileo G ([1632] 1967) Dialogue concerning the two chief world systems – Ptolemaic & Copernican (trans: Drake S). The University of California Press, Berkeley/Los Angeles/LondonGoogle Scholar
  15. Galileo G (1610) The starry messenger. In: Drake S 1957, pp 21–58Google Scholar
  16. Hamilton WR (1835) On a general method in dynamics; by which the study of the motions of all free systems of attracting and repelling points is reduce to the search and differentiation of one central relation or characteristic function. Philosophical Transaction of the Royal Society of London 124:247–308Google Scholar
  17. Kant I ([1781] 1990) Kritik der reinen Vernunft. Felix Meiner, HamburgGoogle Scholar
  18. Kant I (1755) Universal natural history and theory of the heavens. Richer Resources Publications, ArlingtonGoogle Scholar
  19. Kvasz L (2011) Classical mechanics between history and philosophy. In: Mate A, Redei M, Stadler F (eds) Vienna circle in Hungary. Springer, Vienna, pp 129–154CrossRefGoogle Scholar
  20. Kvasz L (2008) Patterns of change. Linguistic innovations in the development of classical mathematics. Birkhäuser, BaselzbMATHGoogle Scholar
  21. Lagrange J (1788) Mécanique analytique. Desaint, Paris. [English translation: Id., (1998) Analytical mechanics. Kluwer, Dordrecht]Google Scholar
  22. Laplace PS (1816) Sur la vitesse du son dans l’air et dans l’eau. Annales de chimie 3:238–241Google Scholar
  23. Laplace PS (1796) Exposition du système du monde. Duprat, ParisGoogle Scholar
  24. Loschmidt J (1876) Űber den Zustand des Wärmegleichgewichtes eines Systems von Kőrpern mit Rücksicht auf die Schwerkraft, Sitzungsber. Kaiserliche Akademie der Wissenschaften Wien, Mathematische und Naturwissenschaftliche Classe 73:128Google Scholar
  25. Mach E (1893) The science of mechanics. The Open Court, Chicago 1902zbMATHGoogle Scholar
  26. Maxwell JC (1855–1856; 1861–1862) On physical lines of forces. Philosophical Magazine XXI:161–175Google Scholar
  27. Maxwell JC (1873) A treatise on electricity and magnetism, 2 vols. The Clarendon Press, Oxford [Reprint Dover, New York, 1954]Google Scholar
  28. Navier CLMH ([1821] 1823) Mémoire sur les lois du mouvement des fluides. Mémoires de l'Académie des sciences de l'Institut de France, Tome VI (1816–1849). Gauthier–Villars, Paris, pp 389–440Google Scholar
  29. Newton I ([1687] 1999) Philosophiae Naturalis Principia Mathematica. German translation In: Die mathematischen Prinzipien der Physik. De Gruyter, BerlinGoogle Scholar
  30. Newton I ([1670] 1988) Über die Gravitation. Bohme G (ed). Vittorio Klostermann, FrankfurtGoogle Scholar
  31. Vavilov SI (1945) Izak Njuton. Izdatelstvo Akademii Nauk, MoscowGoogle Scholar
  32. Westfall RS (1971) Force in Newton’s physics. Macdonald, LondonzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Philosophy of the Academy of Sciences of Czech RepublicPragueCzech Republic

Personalised recommendations