Historical Reflections on the Physics Mathematics Relationship in Electromagnetic Theory

  • Raffaele PisanoEmail author
Part of the History of Mechanism and Machine Science book series (HMMS, volume 16)


In this paper I present a historical inquiry on the relationship between physics and mathematics in electromagnetic theory around the nineteenth century. The investigation is within the domain of the history of physics. By essentially following Maxwell’s fundamental aspects of physics mathematics in his A Treatise on Electricity and Magnetism, some epistemological reflections will be put forth, as well as observations regarding the different scientific approaches between Faraday’s Experimental Researches in Electricity and Maxwell’s science.


Electric Displacement Electromagnetic Theory Physical Idea Physical Magnitude Physical Analogy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agassi J (2008) Science and its history: a reassessment of the historiography of science, vol 253, Boston study in the philosophy of science. Springer, DordrechtGoogle Scholar
  2. Agassi J (1971) Faraday as a natural philosopher. The University of Chicago Press, ChicagoGoogle Scholar
  3. Ampère AM (1822a) Recueil d’observation électrodynamiques. Crochard, ParisGoogle Scholar
  4. Ampère AM (1822b) Extrait d'une lettre d'Ampère au Professeur de La Rive sur des expériences électro–magnétiques et sur la formule qui représente l'action mutuelle de deux portions infiniment petites de courants électriques − 12 juin 1822. Bibliothèque universelle des sciences, belles- lettres, et arts XX:185–192Google Scholar
  5. Ampère AM (1822c) Mémoire-Sur la Détermination de la formule qui représente l'action mutuelle de deux portion infiniment petites de conducteurs voltaïques lu à l'Académie des sciences le10 juin 1822. Annales de chimie et de physique XX:398–419Google Scholar
  6. Ampère AM (1827) Théorie mathématiques des phénomènes électro–dynamiques uniquement déduite de l'expérience. Chez Firmin Didot, ParisGoogle Scholar
  7. Ampère AM (1826) Théorie des phénomènes électro–dynamiques uniquement déduite de l’expérience. Méquignon–Marvis, ParisGoogle Scholar
  8. Arianrhod R (2003) Einstein’s heroes: imagining the world through the language of mathematics reviewed. The University of Queensland Press, BrisbaneGoogle Scholar
  9. Assis AKT, Ribeiro JEA, Vannucci A (2009) The field concepts of Faraday and Maxwell. In: Cattani MSD, Crispino LCB, Gomes MOC, Santoro AFS (eds) Trends in physics. Festschrift in Homage to Prof. José Maria Filardo Bassalo. Editora Livraria da Física, São Paulo, pp 31–38Google Scholar
  10. Baggott J (1991) The myth of Michael Faraday: Michael Faraday was not just one of Britain’s greatest experimenters. A closer look at the man and his work reveals that he was also a clever theoretician. New Scientist 21:43–45Google Scholar
  11. Bence JH (1870) The life and letters of Faraday, 2 vols. Lippincott & Company, Philadelphia.Google Scholar
  12. Beth EW (1959) The foundations of mathematics. A study in the philosophy of sciences. Studies in logic. Amsterdam, North HollandGoogle Scholar
  13. Blay M (1992) La naissance de la mécanique analytique la science du mouvement au tournant des XVIIe et XVIIIe siècles. Presses Universitaires de France, ParisGoogle Scholar
  14. Bork AM (1967) Maxwell and the vector potential. Isis 58(2):210–212zbMATHCrossRefGoogle Scholar
  15. Buchwald JZ (1985) Modifying the continuum: methods of Maxwellian electrodynamics. In: Harman PM (ed) Wrangler and Physicists. The Manchester University Press, Manchester, pp 225–41Google Scholar
  16. Campbell L, Garnett W ([1882] 1969) The life of James Clerk Maxwell. Kargon RH. Johnson Reprint Corp, New YorkGoogle Scholar
  17. Cantor G (1991) Michael Faraday, Sandemanian and Scientist. Macmillan, LondonGoogle Scholar
  18. Capecchi D, Pisano R (2007) La teoria dei baricentri di Torricelli come fondamento della static. Physis XLIV(1):1–29MathSciNetGoogle Scholar
  19. Capecchi D, Drago A (2005) On Lagrange’s history of mechanics. Meccanica 40:19–33MathSciNetzbMATHCrossRefGoogle Scholar
  20. Carnot L (1803a) Principes fondamentaux de l’équilibre et du mouvement. Deterville, ParisGoogle Scholar
  21. Carnot L (1803b) Géométrie de position. Duprat, ParisGoogle Scholar
  22. Carnot L (1786) Essai sur les machines en général. Defay, DijonGoogle Scholar
  23. Carnot S (1986) Reflexions on the motive power of fire: a critical edition with the surviving scientific manuscripts. Translated and edited by Robert Fox. The Manchester University Press, ManchesterGoogle Scholar
  24. Coulomb CA (1785) Premier mémoire sur l'électricité et le magnétisme. Construction et usage d'une balance électrique, fondée sur la propriété qu'ont les fils de métal, d'avoir une force de réaction de torsion proportionnelle à l'angle de torsion. In: Histoire et mémoires de l'Académie [royale] des sciences avec les mémoires de mathématiques et de physique, Partie “Mémoires”, pp 569–577Google Scholar
  25. D’Agostino S (2000) On the difficulties of the transiction from Maxwell’s and Hertz’s pure-field theories to Lorentz’s electron. Physics in Perspective 2:398–410MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. Darrigol O (2005) Les équations de Maxwell: De McCullagh à Lorentz. Belin, ParisGoogle Scholar
  27. Darrigol O (2000) Electrodynamics from Ampère to Einstein. The Oxford University Press, OxfordzbMATHGoogle Scholar
  28. Drago A (2007) There exist two models of organization of a scientific theory. Atti della della Fondazione Ronchi 62(6):839–856Google Scholar
  29. Drago A (1988) A characterization of Newtonian paradigm. In: Scheurer PB, Debrock G (eds) Newton’s scientific and philosophical legacy. Kluwer Academy Press, Dordrecht, pp 239–252CrossRefGoogle Scholar
  30. Everitt CWF (1970–1980) James Clerk Maxwell. In: Gillispie 1970–1980, vol IX, pp 198–230Google Scholar
  31. Faraday M (2008) The correspondence of Michael Faraday volume 5, 1855–1860. In: James FAJL (ed). The Institution of Engineering and Technology, LondonGoogle Scholar
  32. Faraday M (1899) The letters of Faraday and Schoenbein 1836–1862. With notes, comments and references to contemporary letters. Williams & Norgate, LondonGoogle Scholar
  33. Faraday M (1896) The liquefaction of gases. WF Clay, EdinburghGoogle Scholar
  34. Faraday M (1860) Course of six lectures on the various forces of matter, and their relations to each other. Griffin, London/GlasgowGoogle Scholar
  35. Faraday M (1859) Experimental researches in chemistry and physics. Richard Taylor and William Francis, London, pp 81–84Google Scholar
  36. Faraday M (1839–1855) Experimental researches in electricity, 3 vols. Taylor, LondonGoogle Scholar
  37. Faraday (1851) On magnetic actions; and on the magnetic condition of all matter. In: Abstracts of the papers communicated to The Royal Society of London 1843–1850, vol V. Taylor R, London, pp 592–595Google Scholar
  38. Faraday M (1844) On static electrical inductive action. Philosophical Journal 22(144):200–204Google Scholar
  39. Faraday M (1823) On hydrate of chlorine. The Quarterly Journal of Science 15:71Google Scholar
  40. Fourier JBJ (1822) Théorie analytique de la chaleur. Firmin Didot, ParisGoogle Scholar
  41. Fourier JBJ (1807) Théorie de la propagation de la chaleur dans les solides. Nouveau Bulletin des Sciences par la Société philomathique de Paris, Tome I, vol 6(n. 6, mars 1808). Bernard, Paris, pp 112–116Google Scholar
  42. Fox R (1974) The rise and fall of Laplacian physics. Historical Studies in the Physical Sciences 4:89–136CrossRefGoogle Scholar
  43. Fufay CF ([1733] 1735) Quatrième mémoire sur l'électricité. De l'attraction et répulsion des coprs électriques. En : Histoire et mémoires de l'Académie [royale] des sciences avec les mémoires de mathématiques et de physique, partie “Mémoires”, pp 457–476Google Scholar
  44. Giannetto E (2007) The electromagnetic conception of nature and the origins of quantum physics. In: Garola C, Rossi A, Sozzo S (eds) The foundations of quantum mechanics. Historical analysis and open questions. World Scientific, Singapore, pp 178–185Google Scholar
  45. Gillispie CC, Pisano R (2012) Lazare and Sadi Carnot. A scientific and filial relationship. Springer, DordrechtGoogle Scholar
  46. Gillispie CC (1997) Pierre Simon Laplace 1749–1827: a life in exact science. Princeton University Press, PrincetonzbMATHGoogle Scholar
  47. Gillispie CC (ed) (1970–1980) Dictionary of scientific biography. Charles Scribner’s Sons, New YorkGoogle Scholar
  48. Gladstone JH (1872) Michael Faraday. Macmillan, LondonGoogle Scholar
  49. Glazebrook RT (1896) James Clerk Maxwell and modern physics. Macmillan, LondonCrossRefGoogle Scholar
  50. Gmellin L (ed) (1848) Works of the cavendish society. Hand-book of chemistry, vol 2. The Cavendish Society [Press], LondonGoogle Scholar
  51. Gooding D (ed) (1985) Faraday rediscovered: essays on the life and work of Michael Faraday, 1791–1867. Macmillan/Stockton, London/New YorkGoogle Scholar
  52. Hamilton J (2004) A life of discovery: Michael Faraday, giant of the scientific revolution. Random House, New YorkGoogle Scholar
  53. Hamilton J (2002) Faraday: the life. Harper Collins, LondonGoogle Scholar
  54. Harman PM (2004) Oxford dictionary of national biography, vol 37. The Oxford University Press, OxfordGoogle Scholar
  55. Harman PM (1998) The natural philosophy of James Clerk Maxwell. The Cambridge University Press, CambridgezbMATHGoogle Scholar
  56. Harman PM (ed) (1990) The scientific letters and papers of James Clerk Maxwell (1846–1862), vol I. The University of Cambridge Press, Cambridge, pp 35–42Google Scholar
  57. Heaviside O (1889) On the electromagnetic effects due to the motion of electrification through a dielectric. Philosophical Magazine 27:324–339zbMATHCrossRefGoogle Scholar
  58. Heilbron JL (1979) Electricity in the 17th and 18th centuries. The University of California Press, BerkeleyGoogle Scholar
  59. Hirshfeld AW (2006) The electric life of Michael Faraday. Walker and Company, New YorkGoogle Scholar
  60. James AJLF (1991–2008) The Correspondence of Michael Faraday. 5 Vols. The Institution of Electrical Engineers, LondonGoogle Scholar
  61. Kragh H (2002) The vortex atom: a Victorian theory of everything. Centaurus 44:32–114MathSciNetCrossRefGoogle Scholar
  62. Lagrange JL (1788) Mécanique analytique. Desaint, ParisGoogle Scholar
  63. Lamé G (1861) Leçons sur la théorie analytique de la chaleur. Mallet–Bachelier, ParisGoogle Scholar
  64. Lamé G (1836) Cours de physique de l’école polytechnique, vol I. Bachelier, Paris (Id, Cours de physique de l’école polytechnique, 2nd edn. Bruxelles)Google Scholar
  65. Laplace PS (1805) Traité de mécanique céleste. Courcier, ParisGoogle Scholar
  66. Larmor J (1892) On the theory of electrodynamics, as affected by the nature of the mechanical stresses in excited dielectrics. Proceedings of the Royal Society 52:55–66CrossRefGoogle Scholar
  67. Larmor J (1891) On the theory of electrodynamics. Proceedings of the Royal Society 49:521–36zbMATHCrossRefGoogle Scholar
  68. Lindsay R, Margenau B, Margenau H (1946) Foundations of physics. Wiley, New YorkGoogle Scholar
  69. Longo G (2009) Randomness and determination, from physics and computing towards biology. Lecture Notes in Computer Science, vol 5404. Springer, Berlin-Heidelberg, pp 49–62Google Scholar
  70. Mahon B (2003) The man who changed everything – the life of James Clerk Maxwell. Wiley, HobokenGoogle Scholar
  71. Maxwell JC ([1890] 2003) The scientific papers. In: Niven WD (ed), 2 vols. Dover, New YorkGoogle Scholar
  72. Maxwell JC (1920) Matter and motion. In: Larmor J (ed). Macmillan, LondonGoogle Scholar
  73. Maxwell JC (1881) An elementary treatise on electricity. Garnett W (ed). The Clarendon Press, OxfordGoogle Scholar
  74. Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. The Philosophical Transactions of the Royal Society of London 170:231–256ADSzbMATHCrossRefGoogle Scholar
  75. Maxwell JC (1874) On Hamilton’s characteristic function for a narrow beam of light. Proceedings of the London Mathematical Society s1–6(1):182–190CrossRefGoogle Scholar
  76. Maxwell JC (1873) A treatise on electricity and magnetism, 2 vols. The Clarendon Press, OxfordGoogle Scholar
  77. Maxwell JC (1871) Theory of heat. Longmann Green, Roberts & Green, LondonGoogle Scholar
  78. Maxwell JC (1865) A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London CLV:459–512CrossRefGoogle Scholar
  79. Maxwell JC (1855–1856; 1861–1862). On physical lines of forces. Philosophical Magazine XXI:161–175, 281–291, 338–348; Philosophical Magazine XXII:12–24, 85–95Google Scholar
  80. Maxwell JC (1860) Illustrations of the dynamical theory of gases. Philosophical Magazine XIX:19–32; XX:21–37. See also: Maxwell (1890) I:377–409Google Scholar
  81. Maxwell JC ([read 1855 and 1856] 1855) On Faraday’s lines of force. In: Maxwell [1890] 2003, pp 155–229Google Scholar
  82. McAulay A (1892) On the mathematical theory of electromagnetism. The Philosophical Transactions of the Royal Society 183:685–779ADSzbMATHCrossRefGoogle Scholar
  83. Meurig TJ (1991) Michael Faraday and the royal institution: the genius of man and place. Hilger, BristolGoogle Scholar
  84. Nersessian NJ (1989) Faraday’s field concept. In: Goodingand D, James FAJL (eds) Faraday rediscovered. Macmillan Press, Basingstoke, pp 175–187Google Scholar
  85. Newton I ([1687] 1803) The mathematical principles of natural philosophy, by Sir Isaac Newton. Translated into English by Motte A. Symonds, LondonGoogle Scholar
  86. Ørsted HC (1820) Expériences sur effet du conflit électrique sur l'aiguille aimantée. Annales de chimie et physique 14:417–425Google Scholar
  87. Panza M (2003a) Mathematical proofs. Synthese 134(1–2):119–158MathSciNetzbMATHCrossRefGoogle Scholar
  88. Panza, M (2003b) The Origins of Analytic Mechanics in the 18th Century. In: Jahnke HN (ed) A history of analysis. Proceedings of the American Mathematical Society and The London Mathematical Society, London, pp 137–153Google Scholar
  89. Panza M (2002) Newton. Les belles letters, ParisGoogle Scholar
  90. Pearce WL (1965) Michael Faraday: a biography. Basic Books, New YorkGoogle Scholar
  91. Pisano R (2011a) On Lazare and Sadi Carnot. A synthetic view of a historical epistemological research program. In: Mantovani R (ed) Proceedings of XXX Congress SISFA. Argalia Editore, Urbino, pp 147–153Google Scholar
  92. Pisano R (2011b) On physics and mathematics relationship. Epistemological reflections. In: Kronfellner M, Tzanakis C, Barbin E (eds) ESU–6 European summer university on the history and epistemology in mathematics. TU, Vienna, pp 457–472Google Scholar
  93. Pisano R, Casolaro F (2011) An historical inquiry on geometry in relativity. Reflections on late relationship geometry-physics. Part two. History research, History Research 2/1:56–64. [See aslo Part One: History Research 1/1:47–60]Google Scholar
  94. Pisano R (2010) On principles in Sadi Carnot’s thermodynamics (1824). Epistemological reflections. Almagest International Interdisciplinary Journal 2(2010):128–179Google Scholar
  95. Pisano R, Capecchi D (2009) La Théorie Analytique de la Chaleur. Notes on Fourier and Lamé. In: Barbin E (ed) Proceedings of Gabriel Lamé, les pérégrinations d’un ingénieur du XIXe siècle. Bulletin de la Sabix 44:83–90Google Scholar
  96. Pisano R, Gaudiello I (2009a) Continuity and discontinuity. An epistemological inquiry based on the use of categories in history of science. Organon 41:245–265Google Scholar
  97. Pisano R, Gaudiello I (2009b) On categories and scientific approach in historical discourse. In: Hunger H (ed) Proceedings of ESHS 3rd Conference. Austrian Academy of Science, Vienna, pp 187–197Google Scholar
  98. Pisano R (2007) A history of chemistry à la Koyré? Introduction and setting of an epistemological problem. Khimiya 17(2):143–161Google Scholar
  99. Pisano R (2004) Il ciclo di S Carnot e la pila di A Volta. In: Garuccio A (ed) Proceedings of del XXIII SISFA Congress, Progedit, Bari, pp 327–348Google Scholar
  100. Poincaré HJ (1900) Les relations entre la physique expérimentale et la physique mathématique. Revue générale des sciences pures et appliquées 11:1163–1175Google Scholar
  101. Poincaré HJ (1897) Les rapports de l'analyse et de la physique mathématique. Revue générale des sciences pures et appliquées 8:857–861Google Scholar
  102. Poincaré H (1890) Électricité et optique. Les théories de Maxwell. Carré, ParisGoogle Scholar
  103. Russel CA (2000) Michael Faraday: physics and faith, Oxford portraits in science series. The Oxford University Press, New YorkGoogle Scholar
  104. Schlote KH (2005) Carl Neumann’s contributions to potential theory and electrodynamics. In: Wisław W (ed) European Mathematics in the last centuries. Institute of Mathematics. The Wroclaw University. Typoscript Studio, Wocralw, pp 123–140Google Scholar
  105. Siegel DM (1981) Thomson, Maxwell, and the universal ether in Victorian physics. In: Cantor GN, Hodge MJS (eds) Conceptions of ether. Studies in the history of ether theories 1740–1900. The Cambridge University Press, Cambridge/London/New York, pp 239–268Google Scholar
  106. Simpson TK (2005) Figures of thought. A literary appreciation of Maxwell’s treatise on electricity and magnetism. Green Lion Press, Santa Fe, New MexicozbMATHGoogle Scholar
  107. Sweetman JA (ed) (1900) The discovery of induced electric currents, vol II. American Book Company, New YorkGoogle Scholar
  108. Szczeciniarz JJ (2008) Quelle réalité physique l’élaboration théorique mathématique permet–elle de discerner ? À partir de l’article de Hadamard: “Comment je n’ai pas découvert la relativité”. In: Smadja I (ed) Cahiers de philosophie de l’Université de Caen: Réalisme et théories physiques. Presses Universitaires de Caen, Caen, pp 193–223Google Scholar
  109. Szczeciniarz JJ (2006) Espaces mathématiques, espaces philosophiques. In: Lachièze–Rey M (ed) L’Espace physique entre mathématiques et philosophie. EDP Sciences, Les Ulis, pp 205–224Google Scholar
  110. Thackray A (1970) Atoms and powers. An essay on Newtonian matter and the development of chemistry. The Harvard University Press, Cambridge, MAGoogle Scholar
  111. Thompson S (1901) Michael Faraday. His life and work. Cassell & Company, LondonGoogle Scholar
  112. Thomson JJ (1893) Recent researches in electricity and magnetism. The Clarendon Press, OxfordGoogle Scholar
  113. Thomson JJ (1891) On the illustration of the properties of the electric field by means of tubes of electrostatic induction. The Philosophical Magazine 31:150–171Google Scholar
  114. Thomson JJ (1885) Report on electrical theories. The British association for the advancement of science – report 1885, pp 97–155Google Scholar
  115. Thomson JJ (1883) A treatise on the motion of vortex rings. Macmillan and Co., LondonGoogle Scholar
  116. Thomson JJ (1881) On the electric and magnetic effects produced by the motion of electrified bodies. The Philosophical Magazine 11:229–249CrossRefGoogle Scholar
  117. Tolstoy I (1982) James Clerk Maxwell: a biography. The University of Chicago Press, ChicagoGoogle Scholar
  118. Torricelli E (1715) Lezioni Accademiche d’Evangelista Torricelli Matematico, e Filosofo del Sereniss. Ferdinando II Gran Duca di Toscana, Firenze, Jacopo Guiducci e Santi Franchi, S.A.R.Google Scholar
  119. Tyndall J (1868) Faraday as discover. Longmans, LondonGoogle Scholar
  120. Whewell W (1837) History of the inductive sciences from the earliest to the present Times, 3 vols. Longmans–Green & Company, LondonGoogle Scholar
  121. Whewell W (1840) The philosophy of the inductive sciences, founded upon their history, 2 vols. Longmans–Green & Company, LondonGoogle Scholar
  122. Williams LP (1970–1980) Michael Faraday. In: Gillispie 1970–1980, vol IV, pp 527–540Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre François Viète Épistémologie, Historie des Sciences et des TechniqueUniversity of NantesNantesFrance
  2. 2.Research Centre for the Theory and History of Science, Department of PhilosophyUniversity of West Bohemia in PilsenPilsenCzech Republic

Personalised recommendations