Skip to main content

Land Use and Land Management Effects on Nitrous Oxide Fluxes

  • Chapter
  • First Online:
Soil Emission of Nitrous Oxide and its Mitigation

Abstract

The terrestrial ecosystems are the major source of N2O contributing about 65% of global emissions. Agricultural activities are the most important anthropogenic N2O emissions, accounting for 60–80% of the anthropogenic N2O sources, mostly as N inputs to agricultural soils. Estimates of N2O emissions from various agricultural systems vary widely due to variations in climatic and environmental factors, soil organic carbon (SOC) concentration, soil texture, soil drainage, abundance of NO3-N, soil pH, management practices, and crop type. Under managed pasture soils, N2O is mainly generated from mineral N originating from urine, dung, and biologically fixed N. Fluxes of N2O from grazed pastures are also highly variable due to patchiness of animal excreta. In grassland ecosystems, significant N2O emissions could occur from the accumulation of mainly nitrate-N following mineralization of organic N from legume-based pastures. Tropical savannas contribute N2O emissions from grazing animals and frequent fires. Unfertilized forestry systems may emit less but the fertilized plantations emit more N2O than the extensive grazed pastures. Overall, there is a need to examine the emission factors used for estimating N2O emissions. The ratio of N2O:N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SOC:

Soil organic carbon

SOM:

Soil organic matter

EF:

Emission factors

IFA:

International Fertilizer Industry Association

FAO:

Food and Agriculture Organization

CT:

Conventional tillage

NT:

No tillage

BNF:

Biological nitrogen fixation

SON:

Soil organic nitrogen

OC:

Organic carbon

WFPS:

Water-filled pore spaces

References

  • Ambus, P., Zechmeister-Boltenstern, S., Butterbach-Bahl, K. (2006) Sources of nitrous oxide emitted from European forest soils. Biogeosciences3(2), 135–145

    Article  CAS  Google Scholar 

  • Aulakh, M.S., Doran, J.W., Walters, D.T., Mosier, A.R., Francis, D.D. (1991) Crop residue type and placement effects on denitrification and mineralization. Soil Sci. Soc. Am. J.55(4), 1020–1025

    Article  Google Scholar 

  • Azam, F., Muller, C., Weiske, A., Benckiser, G., Ottow, J.C.G. (2002) Nitrification and denitrification as sources of atmospheric nitrous oxide - role of oxidizable carbon and applied nitrogen. Biol. Fertil. Soils35(1), 54–61. doi:10.1007/s00374-001-0441-5

    Article  CAS  Google Scholar 

  • Baggs, E.M., Stevenson, M., Pihlatie, M., Regar, A., Cook, H., Cadisch, G. (2003) Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant Soil254(2), 361–370

    Article  CAS  Google Scholar 

  • Ball, B.C., Horgan, G.W., Parker, J.P. (2000) Short-range spatial variation of nitrous oxide fluxes in relation to compaction and straw residues. Eur. J. Soil Sci.51(4), 607–616

    Article  Google Scholar 

  • Ball, B.C., Ritchie, R.M. (1999) Soil and residue management effects on arable cropping conditions and nitrous oxide fluxes under controlled traffic in Scotland 1. Soil and crop responses. Soil Till. Res.52(3–4), 177–189

    Article  Google Scholar 

  • Bange, H.W. (2000) Global change - It's not a gas. Nature408(6810), 301–302

    Article  CAS  Google Scholar 

  • Bedard-Haughn, A., Matson, A.L., Pennock, D.J. (2006) Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands. Soil Biol. Biochem.38(12), 3398–3406. doi:10.1016/j.soilbio.2006.05.010

    Article  CAS  Google Scholar 

  • Bhandral, R., Saggar, S., Bolan, N.S., Hedley, M.J. (2007) Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction. Soil Till. Res.94(2), 482–492. doi:10.1016/j.still.2006.10.006

    Article  Google Scholar 

  • Blackmer, A.M., Cerrato, M.E. (1986) Soil properties affecting formation of nitric oxide by chemical reactions of nitrite. Soil Sci. Soc. Am. J.50(5), 1215–1218

    Article  CAS  Google Scholar 

  • Bockman, O.C., Olfs, H.W. (1998) Fertilizers, agronomy and N2O. Nutr. Cycl. Agroecosys.52(2–3), 165–170

    Article  CAS  Google Scholar 

  • Bolan, N.S., Saggar, S., Luo, J., Bhandral, R., Singh, J. (2004) Gaseous Emissions of nitrogen from grazed pastures: processes, measurementsand modelling, environmental implications, and mitigation. Adv. Agron.84, 37–120

    Article  CAS  Google Scholar 

  • Bollmann, A., Conrad, R. (1998) Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biol.4(4), 387–396

    Article  Google Scholar 

  • Borken, W., Matzner, E. (2004) Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. J. Plant Nutr. Soil Sci.167(3), 277–283. doi:10.1002/jpln.200421354

    Article  CAS  Google Scholar 

  • Borlaug, N. (2007) Feeding a hungry world. Science318, 359–359. doi:10.1126/science.1151062

    Article  CAS  Google Scholar 

  • Bouwman, A.F. (1996) Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosys.46(1), 53–70. doi:10.1007/bf00210224

    Article  CAS  Google Scholar 

  • Bouwman, A.F. (1998) Nitrogen oxides and tropical agriculture. Nature392(6679), 866–867

    Article  CAS  Google Scholar 

  • Bouwman, A.F., Boumans, L.J.M., Batjes, N.H. (2002) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogechem. Cycles16(4), 1080. doi:10.1029/2001gb001812

    Article  CAS  Google Scholar 

  • Bremner, J.M., Blackmer, A.M. (1978) Nitrous oxide: Emission from soils during nitrification of fertilizer nitrogen. Science199(4326), 295–296

    Article  CAS  Google Scholar 

  • Brown, H.A., Wagner-Riddle, C., Thurtell, G.W. (2000) Nitrous oxide flux from solid dairy manure in storage as affected by water content and redox potential. J. Environ. Qual.29(2), 630–638

    Article  CAS  Google Scholar 

  • Brumme, R. (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps.3. Environmental-regulation of soil respiration and nitrous-oxide emissions along a microclimatic gradient. Plant Soil168, 593–600

    Article  Google Scholar 

  • Burkart, M.R., James, D.E. (1999) Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico. J. Environ. Qual.28(3), 850–859

    Article  CAS  Google Scholar 

  • Butterbach-Bahl, K., Gasche, R., Huber, C., Kreutzer, K., Papen, H. (1998) Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmos. Environ.32(3), 559–564

    Article  CAS  Google Scholar 

  • Butterbach-Bahl, K., Gasche, R., Willibald, G., Papen, H. (2002) Exchange of N-gases at the Hoglwald Forest - A summary. Plant Soil240(1), 117–123

    Article  CAS  Google Scholar 

  • Cantarel, A.A.M., Bloor, J.M.G., Deltroy, N., Soussana, J.F. (2011) Effects of Climate Change Drivers on Nitrous Oxide Fluxes in an Upland Temperate Grassland. Ecosystems14(2), 223–233. doi:10.1007/s10021-010-9405-7

    Article  CAS  Google Scholar 

  • Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl.8(3), 559–568

    Article  Google Scholar 

  • Cassman, K.G., Wood, S. (2005) Cultivated ecosystems. In: Hassan, R.M., Scholes, R., Ash, N. (eds.) Human well-being: Vol. 1. Current state and trends. pp. 745–794. Island Press, Washington

    Google Scholar 

  • Chadwick, D.R., Pain, B.F., Brookman, S.K.E. (2000) Nitrous oxide and methane emissions following application of animal manures to grassland. J. Environ. Qual.29(1), 277–287

    Article  CAS  Google Scholar 

  • Choudhary, M.A., Akramkhanov, A., Saggar, S. (2002) Nitrous oxide emissions from a New Zealand cropped soil: tillage effects, spatial and seasonal variability. Agric. Ecosys. Environ.93(1–3), 33–43

    Article  CAS  Google Scholar 

  • Clayton, H., McTaggart, I.P., Parker, J., Swan, L., Smith, K.A. (1997) Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and environmental conditions. Biol. Fertil. Soils25(3), 252–260

    Article  CAS  Google Scholar 

  • Clough, T.J., Sherlock, R.R., Rolston, D.E. (2005) A review of the movement and fate of N2O in the subsoil. Nutr. Cycl. Agroecosys.72(1), 3–11. doi:10.1007/s10705-004-7349-z

    Article  CAS  Google Scholar 

  • Conen, F., Dobbie, K.E., Smith, K.A. (2000) Predicting N2O emissions from agricultural land through related soil parameters. Global Change Biol.6(4), 417–426

    Article  Google Scholar 

  • Conrad, R. (2002) Microbiological and biochemical background of production and consumption of NO and N2O in soil. In: Gasche, R., Papen, H., Rennenberg, H. (eds.) Trace gas exchange in forest ecosystems. pp. 3–33. Kluwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  • Crutzen, P.J., Mosier, A.R., Smith, K.A., Winiwarter, W. (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys.8(2), 389–395

    Article  CAS  Google Scholar 

  • Dalal, R.C., Wang, W.J., Robertson, G.P., Parton, W.J. (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Austr. J. Soil Res.41(2), 165–195. doi:10.1071/sr02064

    Article  CAS  Google Scholar 

  • Davidson, E.A. (1991) Fluxes of nitrous oxide and nitric acid from terrestrial ecosystem. In: Rogers, J.E., Whitman, W.B. (eds.) Microbial production and consumption of greenhouse gases: Methane, Nitrous oxide and Halomethane. pp. 219–236. American Society of Microbiology, Washington

    Google Scholar 

  • Davidson, E.A., Keller, M., Erickson, H.E., Verchot, L.V., Veldkamp, E. (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience50(8), 667–680

    Article  Google Scholar 

  • Davidson, E.A., Verchot, L.V. (2000) Testing the Hole-in-the-Pipe Model of nitric and nitrous oxide emissions from soils using the TRAGNET Database. Global Biogechem. Cycles14(4), 1035–1043. doi:10.1029/1999gb001223

    Article  CAS  Google Scholar 

  • Davies, M.G., Smith, K.A., Vinten, A.J.A. (2001) The mineralisation and fate of nitrogen following ploughing of grass and grass-clover swards. Biol. Fertil. Soils33(5), 423–434

    Article  Google Scholar 

  • DeFries, R.S., Foley, J.A., Asner, G.P. (2004) Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ.2(5), 249–257

    Article  Google Scholar 

  • Del Grosso, S.J., Parton, W.J., Mosier, A.R., Walsh, M.K., Ojima, D.S., Thornton, P.E. (2006) DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. J. Environ. Qual.35(4), 1451–1460. doi:10.2134/jeq2005.0160

    Article  CAS  Google Scholar 

  • Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Dias, P.L.d.S., Wofsy, S.C., Zhang, X. (2007) Couplings Between Changes in the Climate System and Biogeochemistry. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., M.Tignor, Miller, H.L. (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 499–587. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Di, H.J., Cameron, K.C. (2002a) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr. Cycl. Agroecosys.64(3), 237–256

    Article  CAS  Google Scholar 

  • Di, H.J., Cameron, K.C. (2002b) The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use Manage.18(4), 395–403. doi:10.1079/sum2002151

    Article  Google Scholar 

  • Diaz, R.J., Rosenberg, R. (2008) Spreading dead zones and consequences for marine ecosystems. Science321(5891), 926–929. doi:10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Drury, C.F., McKenney, D.J., Findlay, W.I. (1991) Relationships between denitrification, microbial biomass and indigenous soil properties. Soil Biol. Biochem.23(8), 751–755. doi:10.1016/0038-0717(91)90145-a

    Article  Google Scholar 

  • Drury, C.F., Reynolds, W.D., Tan, C.S., Welacky, T.W., Calder, W., McLaughlin, N.B. (2006) Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil Sci. Soc. Am. J.70(2), 570–581. doi:10.2136/sssaj2005.0042

    Article  CAS  Google Scholar 

  • Duxbury, J.M., Bouldin, D.R., Terry, R.E., Tate, R.L. (1982) Emissions of nitrous-oxide from soils. Nature298(5873), 462–464

    Article  CAS  Google Scholar 

  • Duxbury, J.M., McConnaughey, P.K. (1986) Effect of fertilizer source on denitrification and nitrous oxide emissions in a maize field. Soil Sci. Soc. Am. J.50(3), 644–648

    Article  CAS  Google Scholar 

  • Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., P. Matson, Midgley, P., Wang, M. (2001) Atmospheric chemistry and greenhouse gases. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., vanderLinden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. p. 881. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Eichner, M.J. (1990) Nitrous oxide emissions from fertilized soils: Summary of available data. J. Environ. Qual.19(2), 272–280

    Article  Google Scholar 

  • Elmi, A.A., Madramootoo, C., Hamel, C., Liu, A. (2003) Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. Biol. Fertil. Soils38(6), 340–348. doi:10.1007/s00374-003-0663-9

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United nations (FAO) (2006) World agriculture: Towards 2030/2050 - Prospects for food, nutrition, agriculture and major commodity groups. Food and Agriculture Organization of the United Nations.http://www.fao.org/docrep/009/a0607e/a0607e00.htm

  • Food and Agriculture Organization of the United nations (FAO) (2010) The food insecurity in the world. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Food and Agriculture Organization of the United nations (FAO) (2011) Food and Agriculture Organization of the United Nations. FAOSTAT: Agriculture Database. http:faostat.fao.org. (Accessed December 2011)

  • FAOSTAT (2001) FAO Statistical Databases. Food and Agricultural Organization of the United Nations. On line at http://fao.org (Accessed July 2011)

  • Feyereisen, G.W., Wilson, B.N., Sands, G.R., Strock, J.S., Porter, P.M. (2006) Potential for a rye cover crop to reduce nitrate loss in southwestern Minnesota. Agron. J.98(6), 1416–1426. doi:10.2134/agronj2005.0134

    Article  CAS  Google Scholar 

  • Firestone, M.K., Davidson, E.A. (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae, M.O., Schimel, D.S. (eds.) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, vol. 47. Life Sciences Research Report, pp. 7–21

    Google Scholar 

  • Flechard, C.R., Ambus, P., Skiba, U., Rees, R.M., Hensen, A., van Amstel, A., Pol-van Dasselaar, A.V., Soussana, J.F., Jones, M., Clifton-Brown, J., Raschi, A., Horvath, L., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J., Calanca, P., Thalman, E., Pilegaard, K., Di Marco, C., Campbell, C., Nemitz, E., Hargreaves, K.J., Levy, P.E., Ball, B.C., Jones, S.K., van de Bulk, W.C.M., Groot, T., Blom, M., Domingues, R., Kasper, G., Allard, V., Ceschia, E., Cellier, P., Laville, P., Henault, C., Bizouard, F., Abdalla, M., Williams, M., Baronti, S., Berretti, F., Grosz, B. (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agric. Ecosys. Environ.121(1–2), 135–152. doi:10.1016/j.agee.2006.12.024

    Article  CAS  Google Scholar 

  • Flechard, C.R., Neftel, A., Jocher, M., Ammann, C., Fuhrer, J. (2005) Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Global Change Biol.11(12), 2114–2127. doi:10.1111/j.1365-2486.2005.01056.x

    Article  Google Scholar 

  • Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K. (2005) Global consequences of land use. Science309(5734), 570–574. doi:10.1126/science.1111772

    Article  CAS  Google Scholar 

  • Freibauer, A. (2003) Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Eur. J. Agron.19(2), 135–160

    Article  CAS  Google Scholar 

  • Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R., Vorosmarty, C.J. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry70(2), 153–226

    Article  CAS  Google Scholar 

  • Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A. (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science320(5878), 889–892. doi:10.1126/science.1136674

    Article  CAS  Google Scholar 

  • Gartzia-Bengoetxea, N., Gonzalez-Arias, A., Merino, A., de Arano, I.M. (2009) Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate Atlantic forests. Soil Biol. Biochem.41(8), 1674–1683. doi:10.1016/j.soilbio.2009.05.010

    Article  CAS  Google Scholar 

  • Godde, M., Conrad, R. (2000) Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biol. Fertil. Soils32(2), 120–128. doi:10.1007/s003740000247

    Google Scholar 

  • Goldewijk, K., Van Drecht, G.G., Bouwman, A.F. (2007) Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. J. Land Use Sci.2(3), 167–190. doi:10.1080/17474230701622940

    Article  Google Scholar 

  • Goldewijk, K.K. (2001) Estimating global land use change over the past 300 years: The HYDE Database. Global Biogechem. Cycles15(2), 417–433. doi:10.1029/1999gb001232

    Article  Google Scholar 

  • Granli, T., Bockman, O.C. (1994) Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences Supplement12, 1–128

    Google Scholar 

  • Granli, T., Bockman, O.C. (1995) Nitrous oxide (N2O) emissions from soils in warm climates. Fert. Res42(1–3), 159–163. doi:10.1007/bf00750510

    Article  CAS  Google Scholar 

  • Grant, B., Smith, W.N., Desjardins, R., Lemke, R., Li, C. (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Climatic Change65(3), 315–332

    Article  CAS  Google Scholar 

  • Green, R.E., Cornell, S.J., Scharlemann, J.P.W., Balmford, A. (2005) Farming and the fate of wild nature. Science307(5709), 550–555. doi:10.1126/science.1106049

    Article  CAS  Google Scholar 

  • Hall, S.J., Matson, P.A. (1999) Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature400(6740), 152–155. doi:10.1038/22094

    Article  CAS  Google Scholar 

  • Haynes, R.J., Goh, K.M. (1978) Ammonium and nitrate nutrition of plants. Biol. Rev. Cambridge Phil. Soc.53(4), 465–510

    Article  CAS  Google Scholar 

  • Haynes, R.J., Williams, P.H. (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. In: Advances in Agronomy, Vol 49, vol. 49. Advances in Agronomy, pp. 119–199.

    Google Scholar 

  • Henderson-Sellers, A., Gornitz, V. (1984) Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Climatic Change6(3), 231–257. doi:10.1007/bf00142475

    Article  Google Scholar 

  • Hutchinson, G.L., Davidson, E.A. (1992) Processes for production and consumption of gaseous nitrogen oxides in soils. In: Mosier, A.R., Duxbury, J.M., Rolston, D.E. (eds.) Agricultural systems effects on trace gases and global climate change. pp. 79–93. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Huttunen, J.T., Nykanen, H., Martikainen, P.J., Nieminen, M. (2003) Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland. Plant Soil255(2), 457–462

    Article  CAS  Google Scholar 

  • International Fertilizer industry Association (IFA) (2007) Sustainable management of the nitrogen cycle in agriculture and mitigation of reactive nitrogen side effects. International Fertilizer Industry Association, (IFA)

    Google Scholar 

  • International Fertilizer industry Association /Food and Agricultural Organization of the United Nations (IFA/FAO) (2001) Global estimates of gaseous emissions of NH3, NO, and N2O from agricultural land. International Fertilizer Industry Association and Food and Agriculture Organization of the United Nations. On line athttp://fao.org/agl/agll/docs/globest.pdfIFA/FAO

  • Inagaki, Y., Miura, S., Kohzu, A. (2004) Effects of forest type and stand age on litterfall quality and soil N dynamics in Shikoku district, southern Japan. For. Ecol. Manage.202(1–3), 107–117. doi:10.1016/j.foreco.2004.07.029

    Article  Google Scholar 

  • Inubushi, K., Barahona, M.A., Yamakawa, K. (1999) Effects of salts and moisture content on N2O emission and nitrogen dynamics in Yellow soil and Andosol in model experiments. Biol. Fertil. Soils29(4), 401–407. doi:10.1007/s003740050571

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use National Greenhouse Gas Inventories Programme

    Google Scholar 

  • Johansson, C., Galbally, I.E. (1984) Production of nitric oxide in loam under aerobic and anaerobic conditions. Appl. Environ. Microb.47(6), 1284–1289

    CAS  Google Scholar 

  • Jones, S.K., Rees, R.M., Skiba, U.M., Ball, B.C. (2005) Greenhouse gas emissions from a managed grassland. Global Planet. Change47(2–4), 201–211. doi:10.1016/j.gloplacha.2004.10.011

    Article  Google Scholar 

  • Jungkunst, H.F., Flessa, H., Scherber, C., Fiedler, S. (2008) Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol. Biochem.40(8), 2047–2054. doi:10.1016/j.soilbio.2008.04.015

    Article  CAS  Google Scholar 

  • Keller, M., Veldkamp, E., Weitz, A.M., Reiners, W.A. (1993) Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica. Nature365(6443), 244–246

    Article  CAS  Google Scholar 

  • Kesik, M., Ambus, P., Baritz, R., Bruggemann, N.B., Butterbach-Bahl, K., Damm, M., Duyzer, J., Horvath, L., Kiese, R., Kitzler, B., Leip, A., Li, C., Pihlatie, M., Pilegaard, K., Seufert, G., Simpson, D., Skiba, U., Smiatek, G., Vesala, T., Zechmeister-Boltenstern, S. (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences2(4), 353–375

    Article  CAS  Google Scholar 

  • Kessavalou, A., Doran, J.W., Mosier, A.R., Drijber, R.A. (1998) Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system. J. Environ. Qual.27(5), 1105–1116

    Article  CAS  Google Scholar 

  • Lambin, E.F., Geist, H.J., Lepers, E. (2003) Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Env. Resour.28, 205–241. doi:10.1146/annurev.energy.28.050302.105459

    Article  Google Scholar 

  • Leahy, P., Kiely, G., Scanlon, T.M. (2004) Managed grasslands: A greenhouse gas sink or source? Geophys. Res. Lett.31(20), L20507. doi:10.1029/2004gl021161

    Article  CAS  Google Scholar 

  • Ledgard, S.F., Sprosen, M.S., Penno, J.W., Rajendram, G.S. (2001) Nitrogen fixation by white clover in pastures grazed by dairy cows: Temporal variation and effects of nitrogen fertilization. Plant Soil229(2), 177–187

    Article  CAS  Google Scholar 

  • Ledgard, S.F., Sprosen, M.S., Steele, K.W. (1996) Nitrogen fixation by nine white clover cultivars in grazed pasture, as affected by nitrogen fertilization. Plant Soil178(2), 193–203

    Article  CAS  Google Scholar 

  • Lee, D.S., Bouwman, A.F., Asman, W.A.H., F.J.Dentener, derHoek, K.W., J, G.J.O. (1997) Emissions of nitric oxide, nitrous oxide and ammonia from grasslands on global scale. In: S.C., j., Pain, B.S. (eds.) Gaseous nitrogen emission from grasslands. pp. 353–371. CAB International, Wallingford

    Google Scholar 

  • Linn, D.M., Doran, J.W. (1984) Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J.48(6), 1267–1272

    Article  CAS  Google Scholar 

  • Lovett, G.M., Weathers, K.C., Arthur, M.A., Schultz, J.C. (2004) Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry67(3), 289–308. doi:10.1023/B:BIOG.0000015786.65466.f5

    Article  CAS  Google Scholar 

  • Low, A.P., Stark, J.M., Dudley, L.M. (1997) Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production. Soil Sci.162(1), 16–27. doi:10.1097/00010694-199701000-00004

    Article  CAS  Google Scholar 

  • Luizao, F., Matson, P., Livingston, G., Luizao, R., Vitousek, P.M. (1989) Nitrous oxide flux following tropical land clearing. Global Biogechem. Cycles3, 281–285

    Article  Google Scholar 

  • Macdonald, C.A., Thomas, N., Robinson, L., Tate, K.R., Ross, D.J., Dando, J., Singh, B.K. (2009) Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biol. Biochem.41(8), 1642–1651. doi:10.1016/j.soilbio.2009.05.003

    Article  CAS  Google Scholar 

  • MacKenzie, A.F., Fan, M.X., Cadrin, F. (1997) Nitrous oxide emission as affected by tillage, corn-soybean-alfalfa rotations and nitrogen fertilization. Can. J, Soil Sci.77(2), 145–152

    Article  CAS  Google Scholar 

  • Maggiotto, S.R., Webb, J.A., Wagner-Riddle, C., Thurtell, G.W. (2000) Nitrous and nitrogen oxide emissions from turfgrass receiving different forms of nitrogen fertilizer. J. Environ. Qual.29(2), 621–630

    Article  CAS  Google Scholar 

  • Matson, P.A., Parton, W.J., Power, A.G., Swift, M.J. (1997) Agricultural intensification and ecosystem properties. Science277(5325), 504–509

    Article  CAS  Google Scholar 

  • McCarl, B.A., Schneider, U.A. (2000) U.S. agriculture’s role in a greenhouse gas emission mitigation world: An economic perspective. Rev. Agric. Econ.22(1), 134–159

    Article  Google Scholar 

  • McKane, R.B., Johnson, L.C., Shaver, G.R., Nadelhoffer, K.J., Rastetter, E.B., Fry, B., Giblin, A.E., Kielland, K., Kwiatkowski, B.L., Laundre, J.A., Murray, G. (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature415(6867), 68–71

    Article  CAS  Google Scholar 

  • McSwiney, C.P., Robertson, G.P. (2005) Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biol.11(10), 1712–1719. doi:10.1111/j.1365-2486.2005.01040.x

    Article  Google Scholar 

  • Menyailo, O.V., Huwe, B. (1999) Activity of denitrification and dynamics of N2O release in soils under six tree species and grassland in central Siberia. J. Plant Nutr. Soil Sci.162(5), 533–538

    Article  CAS  Google Scholar 

  • Menyailo, O.V., Stepanov, A.L., Umarow, M.M. (1997) The transformation of nitrous oxide by denitrifying bacteria in solonchaks. Eurasian Soil Sci.30(2), 178–180

    Google Scholar 

  • Mosier, A.R., Bleken, M.A., Chaiwanakupt, P., Ellis, E.C., Freney, J.R., Howarth, R.B., Matson, P.A., Minami, K., Naylor, R., Weeks, K.N., Zhu, Z.L. (2001) Policy implications of human-accelerated nitrogen cycling. Biogeochemistry52(3), 281–320

    Article  CAS  Google Scholar 

  • Mosier, A.R., Delgado, J.A. (1997) Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere35(9), 2059–2082

    Article  CAS  Google Scholar 

  • Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K. (1996) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil181(1), 95–108. doi:10.1007/bf00011296

    Article  CAS  Google Scholar 

  • Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K. (1998) Assessing and mitigating N2O emissions from agricultural soils. Climatic Change40(1), 7–38. doi:10.1023/a:1005386614431

    Article  CAS  Google Scholar 

  • Mosier, A.R., Halvorson, A.D., Reule, C.A., Liu, X.J.J. (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual.35(4), 1584–1598. doi:10.2134/jeq2005.0232

    Article  CAS  Google Scholar 

  • O'hara, G.W., Daniel, R.M. (1985) Rhizobial denitrification: A review. Soil Biol. Biochem.17(1), 1–9

    Article  Google Scholar 

  • Oenema, O., Tamminga, S. (2005) Nitrogen in global animal production and management options for improving nitrogen use efficiency. Sci. China Ser. C48, 871–887. doi:10.1360/062005-279

    CAS  Google Scholar 

  • Omonode, R.A., Smith, D.R., Gal, A., Vyn, T.J. (2011) Soil nitrous oxide emissions in corn following three decades of tillage and rotation treatments. Soil Sci. Soc. Am. J.75(1), 152–163. doi:10.2136/sssaj2009.0147

    Article  CAS  Google Scholar 

  • Papen, H., Butterbach-Bahl, K. (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany - 1. N2O emissions. J. Geophys. Res. -Atmos.104(D15), 18487–18503

    Article  CAS  Google Scholar 

  • Parton, W.J., Holland, E.A., Del Grosso, S.J., Hartman, M.D., Martin, R.E., Mosier, A.R., Ojima, D.S., Schimel, D.S. (2001) Generalized model for NOx and N2O emissions from soils. J. Geophys. Res. -Atmos.106(D15), 17403–17419. doi:10.1029/2001jd900101

    Article  CAS  Google Scholar 

  • Passianoto, C.C., Ahrens, T., Feigl, B.J., Steudler, P.A., do Carmo, J.B., Melillo, J.M. (2003) Emissions of CO2, N2O, and NO in conventional and no-till management practices in Rondonia, Brazil. Biol. Fertil. Soils38(4), 200–208

    Article  CAS  Google Scholar 

  • Pilbeam, C.J., Warren, G.P. (1995) Use of15 N for fertilizer N recovery and N mineralization studies in semi-arid Kenya. Nutr. Cycl. Agroecosys.42(1), 123–128. doi:10.1007/bf00750506

    CAS  Google Scholar 

  • Poth, M., Focht, D.D. (1985)15 N kinetic-analysis of N2O production byNitrosomonas europaea: An examination of nitrifier denitrification. Appl. Environ. Microb.49(5), 1134–1141

    CAS  Google Scholar 

  • Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A. (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogechem. Cycles22(1), GB1003. doi:10.1029/2007gb002952

    Article  CAS  Google Scholar 

  • Rappoldt, C., Crawford, J.W. (1999) The distribution of anoxic volume in a fractal model of soil. Geoderma88(3–4), 329–347. doi:10.1016/s0016-7061(98)00112-8

    Article  Google Scholar 

  • Robertson, G.P., Groffman, P.M. (2007) Nitrogen transformation. In: Paul, E.A. (ed.) Soil microbiology, biochemistry and ecology. pp. 341–364. Springer, New York

    Chapter  Google Scholar 

  • Robertson, G.P., Paul, E.A., Harwood, R.R. (2000) Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science289(5486), 1922–1925

    Article  CAS  Google Scholar 

  • Sabine, C.L., Heimann, M., Artaxo, P., Bakker, D.C.E., Chen, C.-T.A., Field, C.B., Gruber, N., Le Que´re´, C., Prinn, R.G., Richey, J.E.e.a. (2004) Current status and past trends of the global carbon cycle. In: Field, C., Raupach, M.R. (eds.) The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. pp. 17–44. Island Press, Washington, DC

    Google Scholar 

  • Saggar, S., Andrew, R.M., Tate, K.R., Hedley, C.B., Rodda, N.J., Townsend, J.A. (2004) Modelling nitrous oxide emissions from dairy-grazed pastures. Nutr. Cycl. Agroecosys.68(3), 243–255

    Article  CAS  Google Scholar 

  • Saggar, S., Bolan, N.S., Singh, J., Blard, A. (2005) Economic and environmental impacts of increased nitrogen use in grazed pastures and role of inhibitors in mitigating nitrogen losses. N. Z. Sci. Rev.62, 69–74

    Google Scholar 

  • Saggar, S., Giltrap, D.L., Li, C., Tate, K.R. (2007) Modelling nitrous oxide emissions from grazed grasslands in New Zealand. Agric. Ecosys. Environ.119(1–2), 205–216. doi:10.1016/j.agee.2006.07.010

    Article  CAS  Google Scholar 

  • Saggar, S., Tate, K.R., Giltrap, D.L., Singh, J. (2008) Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review. Plant Soil309(1–2), 25–42. doi:10.1007/s11104-007-9421-3

    Article  CAS  Google Scholar 

  • Sahrawat, K.L., Keeney, D.L. (1986) Nitrous oxide emissions from soils. Adv. Soil Sci.4, 103–148

    Article  Google Scholar 

  • Schmidt, J., Seiler, W., Conrad, R. (1988) Emission of nitrous oxide from temperate forest soils into the atmosphere. J. Atmos. Chem.6(1–2), 95–115. doi:10.1007/bf00048334

    Article  CAS  Google Scholar 

  • Simek, M., Cooper, J.E. (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci.53(3), 345–354. doi:10.1046/j.1365-2389.2002.00461.x

    Google Scholar 

  • Six, J., Ogle, S.M., Breidt, F.J., Conant, R.T., Mosier, A.R., Paustian, K. (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biol.10(2), 155–160. doi:10.1111/j.1529-8817.2003.00730.x

    Article  Google Scholar 

  • Skiba, U., Fowler, D., Smith, K. (1994) Emissions of no and N2O from soils. Environ. Monit. Assess.31(1–2), 153–158

    Article  CAS  Google Scholar 

  • Skiba, U.M., Sheppard, L.J., MacDonald, J., Fowler, D. (1998) Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmos. Environ.32(19), 3311–3320

    Article  CAS  Google Scholar 

  • Smil, V. (2002) Nitrogen and food production: Proteins for human diets. Ambio31(2), 126–131

    Google Scholar 

  • Smith, K.A. (1997) The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Global Change Biol.3(4), 327–338. doi:10.1046/j.1365-2486.1997.00100.x

    Article  CAS  Google Scholar 

  • Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, A. (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci.54(4), 779–791. doi:10.1046/j.1351-0754.2003.0567.x

    Article  Google Scholar 

  • Smith, K.A., Conen, F. (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage.20, 255–263. doi:10.1079/sum2004238

    Article  Google Scholar 

  • Smith, K.A., Dobbie, K.E., Ball, B.C., Bakken, L.R., Sitaula, B.K., Hansen, S., Brumme, R., Borken, W., Christensen, S., Prieme, A., Fowler, D., Macdonald, J.A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A., Degorska, A., Orlanski, P. (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biol.6(7), 791–803

    Article  Google Scholar 

  • Smith, K.A., McTaggart, I.P., Tsuruta, H. (1997) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manage.13(4), 296–304. doi:10.1111/j.1475-2743.1997.tb00601.x

    Article  Google Scholar 

  • Smith, K.A., Thomson, P.E., Clayton, H., McTaggart, I.P., Conen, F. (1998) Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ.32(19), 3301–3309

    Article  CAS  Google Scholar 

  • Smith, P., Goulding, K.W., Smith, K.A., Powlson, D.S., Smith, J.U., Falloon, P., Coleman, K. (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr. Cycl. Agroecosys.60(1–3), 237–252

    Article  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O. (2007) Agriculture In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds.) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 497–540. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Smolander, A., Loponen, J., Suominen, K., Kitunen, V. (2005) Organic matter characteristics and C and N transformations in the humus layer under two tree speciesBetula pendula andPicea abies. Soil Biol. Biochem.37(7), 1309–1318. doi:10.1016/j.soilbio.2004.12.002

    Article  CAS  Google Scholar 

  • Stark, J.M., Firestone, M.K. (1996) Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol. Biochem.28(10–11), 1307–1317. doi:10.1016/s0038-0717(96)00133-2

    Article  CAS  Google Scholar 

  • Subbarao, G.V., Ito, O., Sahrawat, K.L., Berry, W.L., Nakahara, K., Ishikawa, T., Watanabe, T., Suenaga, K., Rondon, M., Rao, I.M. (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit. Rev. Plant Sci.25(4), 303–335. doi:10.1080/07352680600794232

    Article  CAS  Google Scholar 

  • Suzuki, I., Dular, U., Kwok, S.C. (1974) Ammonia or ammonium ion as substrate for oxidation byNitrosomonas europaea cells and extracts. J. Bacteriol.120(1), 556–558

    CAS  Google Scholar 

  • Thornton, F.C., Valente, R.J. (1996) Soil emissions of nitric oxide and nitrous oxide from no-till corn. Soil Sci. Soc. Am. J.60(4), 1127–1133

    Article  Google Scholar 

  • Tiedje, J.M. (1988) Ecology of denitrification and the dissimilatory nitrate reduction to ammonium. In: Zehnder, J.B. (ed.) Biology of anaerobic microorganisms. pp. 179–244. Wiley, New York

    Google Scholar 

  • Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S. (2002) Agricultural sustainability and intensive production practices. Nature418(6898), 671–677. doi:10.1038/nature01014

    Article  CAS  Google Scholar 

  • Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., Swackhamer, D. (2001) Forecasting agriculturally driven global environmental change. Science292(5515), 281–284

    Article  CAS  Google Scholar 

  • Ullah, S., Frasier, R., King, L., Picotte-Anderson, N., Moore, T.R. (2008) Potential fluxes of N2O and CH4 from soils of three forest types in Eastern Canada. Soil Biol. Biochem.40(4), 986–994. doi:10.1016/j.soilbio.2007.11.019

    Article  CAS  Google Scholar 

  • Ussiri, D.A.N., Lal, R., Jarecki, M.K. (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Till. Res.104(2), 247–255. doi:10.1016/j.still.2009.03.001

    Article  Google Scholar 

  • van Groenigen, J.W., Velthof, G.L., van der Bolt, F.J.E., Vos, A., Kuikman, P.J. (2005) Seasonal variation in N2O emissions from urine patches: Effects of urine concentration, soil compaction and dung. Plant Soil273(1–2), 15–27. doi:10.1007/s11104-004-6261-2

    Article  CAS  Google Scholar 

  • Veldkamp, E., Keller, M. (1997) Nitrogen oxide emissions from a banana plantation in the humid tropics. J. Geophys. Res. -Atmos.102(D13), 15889–15898

    Article  CAS  Google Scholar 

  • Veldkamp, E., Keller, M., Nunez, M. (1998) Effects of pasture management on N2O and NO emissions from soils in the humid tropics of Costa Rica. Global Biogechem. Cycles12(1), 71–79

    Article  CAS  Google Scholar 

  • Venterea, R.T., Burger, M., Spokas, K.A. (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J. Environ. Qual.34(5), 1467–1477

    Article  CAS  Google Scholar 

  • Venterea, R.T., Groffman, P.M., Verchot, L.V., Magill, A.H., Aber, J.D. (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For. Ecol. Manage.196(1), 129–142. doi:10.1016/j.foreco.2004.03.016

    Article  Google Scholar 

  • Vinten, A.J.A., Ball, B.C., O'Sullivan, M.F., Henshall, J.K. (2002) The effects of cultivation method, fertilizer input and previous sward-type on organic C and N storage and gaseous losses under spring and-winter barley following long-term leys. J. Agric. Sci.139, 231–243. doi:10.1017/s0021859602002496

    CAS  Google Scholar 

  • Vitousek, P.M., Melillo, J.M. (1979) Nitrate losses from disturbed forests: patterns and mechanisms. Forest Sci.25(4), 605–619

    Google Scholar 

  • Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M. (1997) Human domination of Earth's ecosystems. Science277(5325), 494–499

    Article  CAS  Google Scholar 

  • Vitousek, P.M., Naylor, R., Crews, T., David, M.B., Drinkwater, L.E., Holland, E., Johnes, P.J., Katzenberger, J., Martinelli, L.A., Matson, P.A., Nziguheba, G., Ojima, D., Palm, C.A., Robertson, G.P., Sanchez, P.A., Townsend, A.R., Zhang, F.S. (2009) Nutrient Imbalances in Agricultural Development. Science324(5934), 1519–1520. doi:10.1126/science.1170261

    Article  CAS  Google Scholar 

  • von Arnold, K., Nilsson, M., Hanell, B., Weslien, P., Klemedtsson, L. (2005) Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biol. Biochem.37(6), 1059–1071. doi:10.1016/j.soilbio.2004.11.004

    Article  CAS  Google Scholar 

  • Wackernagel, M., Schulz, N.B., Deumling, D., Linares, A.C., Jenkins, M., Kapos, V., Monfreda, C., Loh, J., Myers, N., Norgaard, R., Randers, J. (2002) Tracking the ecological overshoot of the human economy. Proc. Natl. Acad. Sci. U.S.A.99(14), 9266–9271. doi:10.1073/pnas.142033699

    Article  CAS  Google Scholar 

  • Wang, Y.P., Rees, R.M. (1996) Nitrous oxide production from different forms of nitrogen. In: van Cleemput, O., Hoffman, G. (eds.) Progress in nitrogen cycling studies: Proceedings of 8th Nitrogen Workshop, September 1994. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Weier, K.L., Macrae, I.C., Myers, R.J.K. (1993) Denitrification in a clay soil under pasture and annual crop estimation of potential losses using intact soil cores. Soil Biol. Biochem.25(8), 991–997. doi:10.1016/0038-0717(93)90145-2

    Article  CAS  Google Scholar 

  • Weier, K.L., McEwan, C.W., Vallis, I., Catchpoole, V.R., Myers, R.J. (1996) Potential for biological denitrification of fertilizer nitrogen in sugarcane soils. Austr. J. Agric. Res.47(1), 67–79

    Article  Google Scholar 

  • Weitz, A.M., Veldkamp, E., Keller, M., Neff, J., Crill, P.M. (1998) Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest. J. Geophys. Res. -Atmos.103(D21), 28047–28058

    Article  CAS  Google Scholar 

  • Winkler, J.P., Cherry, R.S., Schlesinger, W.H. (1996) The Q(10) relationship of microbial respiration in a temperate forest soil. Soil Biol. Biochem.28(8), 1067–1072

    Article  CAS  Google Scholar 

  • Wrage, N., Lauf, J., del Prado, A., Pinto, M., Pietrzak, S., Yamulki, S., Oenema, O., Gebauer, G. (2004) Distinguishing sources of N2O in European grasslands by stable isotope analysis. Rapid Commun. Mass Sp.18(11), 1201–1207

    Article  CAS  Google Scholar 

  • World Resources Institute (WRI) (2000) World resources 2000–2001. World Resources Institute. Washington

    Google Scholar 

  • Zechmeister-Boltenstern, S., Hahn, M., Meger, S., Jandl, R. (2002) Nitrous oxide emissions and nitrate leaching in relation to microbial biomass dynamics in a beech forest soil. Soil Biol. Biochem.34(6), 823–832

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ussiri, D., Lal, R. (2013). Land Use and Land Management Effects on Nitrous Oxide Fluxes. In: Soil Emission of Nitrous Oxide and its Mitigation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5364-8_6

Download citation

Publish with us

Policies and ethics