Skip to main content

Formation and Release of Nitrous Oxide from Terrestrial and Aquatic Ecosystems

  • Chapter
  • First Online:

Abstract

Soil nitrogen (N) is in a constant state of flux, moving and changing chemical forms. Nitrification and denitrification are the main processes to remove reactive N (Nr) from the environment. Both are predominantly microbial processes that provide energy to specialized groups of microorganisms. Nitrification oxidizes reduced N, generally NH3 or NH +4 to NO 3 via nitrite under aerobic conditions. Denitrification is the process under which oxidized N is reduced back into N2 under anaerobic conditions. Autotrophic nitrification and heterotrophic denitrification are the major N2O forming processes in terrestrial and aquatic forming in terrestrial and aquatic ecosystems. Major factors regulating nitrification and denitrification are the availability of reactive N, the availability of reductant (mostly labile organic carbon compounds), and oxygen concentration. These three factors are in turn governed by many other factors such as water content, pH, porosity, and the presence of inhibitory compounds, which may act to cause accumulation of ionic (nitrite) or gaseous (nitric oxide, nitrous oxide) intermediates. It has been estimated that soils under terrestrial ecosystems denitrify ~124 Tg N year−1 or about 35–40% of total land based reactive N. Arable soils receiving high inputs of N are hot spots for denitrification and dominant sources of anthropogenic N2O emissions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATP:

adenosine triphosphate

AMO:

ammonia monooxygenase

HAO:

hydroxylamine oxidoreductase

NADPH:

nicotinamide adenine dinucleotide phosphate oxidase

OM:

organic matter

SOM:

soil organic matter

DNRA:

dissimilatory nitrate reduction to ammonium

CEC:

cation exchange capacity

SOC:

soil organic carbon

AOB:

ammonia oxidizing bacteria

WHO:

World Health Organization of the United Nations

US EPA:

U.S. Environmental Protection Agency

NT:

no tillage

References

  • Arp, D.J., Sayavedra-Soto, L.A., Hommes, N.G. (2002) Molecular biology and biochemistry of ammonia oxidation byNitrosomonas europaea. Arch. Microbiol.178(4), 250–255. doi:10.1007/s00203-002-0452-0

    Article  CAS  Google Scholar 

  • Averill, B.A., Tiedje, J.M. (1982) The chemical mechanism of microbial denitrification. Febs Lett.138(1), 8–12

    Article  CAS  Google Scholar 

  • Balderston, W.L., Sherr, B., Payne, W.J. (1976) Blockage by acetylene of nitrous oxide reduction inPseudomonas perfectomarinus. Appl. Environ. Microbiol.31(4), 504–508

    CAS  Google Scholar 

  • Barton, L., McLay, C.D.A., Schipper, L.A., Smith, C.T. (1999) Annual denitrification rates in agricultural and forest soils: a review. Aus. J. Soil Res.37(6), 1073–1093. doi:10.1071/sr99009

    Article  Google Scholar 

  • Bartosch, S., Hartwig, C., Spieck, E., Bock, E. (2002) Immunological detection of nitrospira-like bacteria in various soils. Microbial Ecol.43(1), 26–33. doi:10.1007/s00248-001-0037-5

    Article  CAS  Google Scholar 

  • Basu, P., Katterle, B., Andersson, K.K., Dalton, H. (2003) The membrane-associated form of methane mono-oxygenase fromMethylococcus capsulatus (Bath) is a copper/iron protein. Biochem. J.369, 417–427. doi:10.1042/bj20020823

    Article  CAS  Google Scholar 

  • Bateman, E.J., Baggs, E.M. (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fert. Soils41(6), 379–388. doi:10.1007/s00374-005-0858-3

    Article  CAS  Google Scholar 

  • Bedard-Haughn, A., Matson, A.L., Pennock, D.J. (2006) Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands. Soil Biol. Biochem.38(12), 3398–3406. doi:10.1016/j.soilbio.2006.05.010

    Article  CAS  Google Scholar 

  • Belser, L.W. (1979) Population ecology of nitrifying bacteria. Annu. Rev. Microbiol.33, 309–333

    Article  CAS  Google Scholar 

  • Blagodatskiy, S.A., Avksent'ev, A.A., Davydova, M.A., Blagodatskaya, E.V., Kurakov, A.V. (2008) Nitrous oxide production in soils and the ratio of the fungal to bacterial biomass. Eurasian Soil Sci.41(13), 1448–1455. doi:10.1134/s1064229308130140

    Article  Google Scholar 

  • Bleakley, B.H., Tiedje, J.M. (1982) NIitrous oxide production by organisms other than nitrifiers or denitrifiers. Appl. Environ. Microbiol.44(6), 1342–1348

    CAS  Google Scholar 

  • Bollmann, A., Conrad, R. (1997) Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide. Soil Biol. Biochem.29(7), 1067–1077

    Article  CAS  Google Scholar 

  • Bowden, W.B. (1986) Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: An assessment of their impacts on local and global nitrogen budgets. Biogeochemistry2(3), 249–279

    Article  CAS  Google Scholar 

  • Bremner, J.M. (1997) Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosys.49(1–3), 7–16. doi:10.1023/a:1009798022569

    Article  CAS  Google Scholar 

  • Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S., Papen, H., Kiese, R. (2004) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Glob. Biogeochem. Cycles18(3), GB3012. doi:10.1029/2004gb002243

  • Butterbach-Bahl, K., Willibald, G., Papen, H. (2002) Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils. Plant Soil240(1), 105–116

    Article  CAS  Google Scholar 

  • Casciotti, K.L., Bohlke, J.K., McIlvin, M.R., Mroczkowski, S.J., Hannon, J.E. (2007) Oxygen isotopes in nitrite: Analysis, calibration, and equilibration. Anal. Chem.79(6), 2427–2436. doi:10.1021/ac061598h

    Article  CAS  Google Scholar 

  • Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M., Norton, J., Sayavedra-Soto, L., Arciero, D., Hommes, N., Whittaker, M., Arp, D. (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea (vol 185, pg 2759, 2003). J. Bacteriol.185(21), 6496–6496. doi:10.1128/jb.185.21.2003.6496

    Google Scholar 

  • Chalk, P.M., Smith, C.J. (1983) Chemodenitrification. In: Freney, J.R., Simpson, J.R. (eds.) Gaseous loss of nitrogen from plant-soil systems. Development in plant soil sciences9. 65–89.

    Google Scholar 

  • Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.L., Bernoux, M. (2007) Soils, a sink for N2O? A review. Global Change Biol.13, 1–17

    Article  Google Scholar 

  • Codispoti, L.A., Brandes, J.A., Christensen, J.P., Devol, A.H., Naqvi, S.W.A., Paerl, H.W., Yoshinari, T. (2001) The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Sci. Mar.65, 85–105

    Article  CAS  Google Scholar 

  • Codispoti, L.A., Yoshinari, T., Devol, A.H. ( 2005) Suboxic respiration in the oceanic water-column. In: del Giorgio, P.A., Williams, P.J.l.B. (eds.) Respiration in Aquatic Ecosystems. pp. 225–247. Oxford University Press, Oxford, U.K.

    Chapter  Google Scholar 

  • Conen, F., Neftel, A. (2007) Do increasingly depleted delta N-15 values of atmospheric N2O indicate a decline in soil N2O reduction? Biogeochemistry82(3), 321–326. doi:10.1007/s10533-006-9066-y

    Article  CAS  Google Scholar 

  • Conrad, R. (1990) Flux of NOx between soil and atmosphere: Importance and soil microbial metabolism. In: Revsbech, N.P., Sorensen, J. (eds.) Denitrification in Soil and Sediments. pp. 105–128. Plenum, New York

    Google Scholar 

  • Conrad, R. (1995) Soil microbial processes involved in production and consumption of atmospheric trace gases. Adv. Microb. Ecol.14, 207–250

    Article  CAS  Google Scholar 

  • Conrad, R. (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev.60(4), 609–640

    CAS  Google Scholar 

  • Conrad, R. (2002) Microbial and biogeochemical background of production and consumption of NO and N2O in soil. In: Gasche, R., Papen, H., Rennenberg, H. (eds.) Trace Gas Exchange in Forest Ecosystem. pp. 3–33. Springer, New York, USA

    Google Scholar 

  • Cookson, W.R., Cornforth, I.S., Rowarth, J.S. (2002) Winter soil temperature (2-4 °C) effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study. Soil Biol. Biochem.34(10), 1401–1415

    Article  CAS  Google Scholar 

  • Coyne, M.S., Tiedje, J.M. (1990) Induction of denitrifying enzymes in oxygen-limitedAchromobacter cycloclastes continuous culture. Fems Microbiol. Ecol.73(3), 263–270. doi:10.1111/j.1574-6968.1990.tb03949.x

    Article  CAS  Google Scholar 

  • Coyne, M.S. (2008) Biological denitrification. In: Schepers, J.S., Raun, W.R. (eds.) Nitrogen in agricultural soils. Agronomy Monograph No. 49, pp. 201–253. ASA-CSSA-SSSA, Madison, WI

    Google Scholar 

  • Dambreville, C., Hallet, S., Nguyen, C., Morvan, T., Germon, J.C., Philippot, L. (2006) Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. Fems Microbiol. Ecol.56(1), 119–131. doi:10.1111/j.1574-6941.2006.00064.x

    Article  CAS  Google Scholar 

  • Davidson, E.A., Myrold, D.D., Groffman, P.M. (1990) Denitrification in temperate forest ecosystems. In: Gessel, S.P., Lacate, D.S., Weetam, G.F., Powers, R.F. (eds.) Sustained productivity of forest soils. Proceedings of 7th North America Forest Soils Conference. pp. 196–220. University of British Columbia, Vancouver, Britis Columbia

    Google Scholar 

  • Davidson, E.A., Vitousek, P.M., Matson, P.A., Riley, R., Garciamendez, G., Maass, J.M. (1991) Soil emissions of nitric-oxide in a seasonally dry tropical forest of Mexico. J. Geophys. Res.-Atmos.96(D8), 15439–15445

    Article  CAS  Google Scholar 

  • De Boer, W., Kowalchuk, G.A. (2001) Nitrification in acid soils: microorganisms and mechanisms. Soil Biol. Biochem.33(7–8), 853–866

    Article  Google Scholar 

  • Devol, A.H. (2008) Denitrification inluding anammox. In: Capone, D.G., Bronk, D.A., Muholland, M.R., Carpenter, E.J. (eds.) Nitrogen in the Marine Environment. pp. 263–301. Elsevier Amsterdam, The Netherland

    Chapter  Google Scholar 

  • Dutch, J., Ineson, P. (1990) Denitrification of an upland forest site. Forestry63(4), 363–377. doi:10.1093/forestry/63.4.363

    Article  Google Scholar 

  • Duxbury, J.M., McConnaughey, P.K. (1986) Effect of fertilizer source on denitrification and nitrous oxide emissions in a maize field. Soil Sci. Soc. Am. J.50(3), 644–648

    Article  CAS  Google Scholar 

  • Enwall, K., Philippot, L., Hallin, S. (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl. Environ. Microbiol.71(12), 8335–8343. doi:10.1128/aem.71.12.8335-8343.2005

    Article  CAS  Google Scholar 

  • Firestone, M.K., Davidson, E.A. (1989) Microrbiolgical basis of NO and N2O production and consumption in soil. In: Andreae, M.O., Schimel, D.S. (eds.) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Life Sciences Research Report47, 7–21.

    Google Scholar 

  • Focht, D.D., Verstraete, W. (1977) Biochemical ecology of nitrification and denitrification. In: Alexander, M. (ed.) Advances in Microbial Ecology1, 135–214. Plenum Press, New York

    Google Scholar 

  • Forrest, W.W., Walker, D.J. (1971) The generation and utilization of energy during growth. Adv. Microb. Physiol.5, 213–274

    Article  CAS  Google Scholar 

  • Freney, J.R. (1997) Emission of nitrous oxide from soils used for agriculture. Nutr. Cycl. Agroecosys.49(1–3), 1–6

    Article  CAS  Google Scholar 

  • Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J. (2003) The nitrogen cascade. Bioscience53(4), 341–356

    Article  Google Scholar 

  • Gasche, R., Papen, H. (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. 2. NO and NO2 fluxes. J. Geophys. Res.-Atmos.104(D15), 18505–18520

    Google Scholar 

  • Godde, M., Conrad, R. (2000) Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biol. Fert. Soils32(2), 120–128

    Article  CAS  Google Scholar 

  • Groffman, P.M., Altabet, M.A., Böhlke, J.K., Butterbach-Bahl, K., David, M.B., Firestone, M.K., Giblin, A.E., Kana, T.M., Nielsen, L.P., Voytek, M.A. (2006) Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol. Appl.16(6), 2091–2122

    Article  Google Scholar 

  • Groffman, P.M., Rice, C.W., Tiedje, J.M. (1993) Denitrification in a tallgrass Prairie landscape. Ecology74(3), 855–862. doi:10.2307/1940811

    Article  Google Scholar 

  • Haynes, R.J. (1995) Nitrous oxide budget Enc. Environ. Biol.2, 579–585

    Google Scholar 

  • Henrich, M., Haselwandter, K. (1997) Denitrification and gaseous nitrogen losses from an acid spruce forest soil. Soil Biol. Biochem.29(9–10), 1529–1537. doi:10.1016/s0038-0717(97)00010-2

    Article  CAS  Google Scholar 

  • Henry, S., Baudoin, E., Lopez-Gutierrez, J.C., Martin-Laurent, F., Baumann, A., Philippot, L. (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Meth.59(3), 327–335. doi:10.1016/j.mimet.2004.07.002

    Article  CAS  Google Scholar 

  • Henry, S., Bru, D., Stres, B., Hallet, S., Philippot, L. (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol.72(8), 5181–5189. doi:10.1128/aem.00231-06

    Article  CAS  Google Scholar 

  • Hofstra, N., Bouwman, A.F. (2005) Denitrification in agricultural soils: Summarizing published data and estimating global annual rates. Nutr. Cycl. Agroecosys.72(3), 267–278. doi:10.1007/s10705-005-3109-y

    Article  Google Scholar 

  • Hooper, A.B.. (1968) A nitrite-reducing enzyme fromNitrosomonas europaea: preliminary characterization with hydroxylamine as electron donor. Biochim. Biophys. Acta162(1), 49–65

    Article  CAS  Google Scholar 

  • Hooper, A.B.., Vannelli, T., Bergmann, D.J., Arciero, D.M. (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Ant. Leew. Int. J. G. Mol. Microb.71(1–2), 59–67

    CAS  Google Scholar 

  • Jarvis, S.C. (1996) Future trends in nitrogen research. Plant Soil181(1), 47–56

    Article  CAS  Google Scholar 

  • Jetten, M.S.M., Logemann, S., Muyzer, G., Robertson, L.A., deVries, S., vanLoosdrecht, M.C.M., Kuenen, J.G. (1997) Novel principles in the microbial conversion of nitrogen compounds. Ant. Leew. Int. J. G. Mol. Microb.71(1–2), 75–93

    CAS  Google Scholar 

  • Johansson, C., Sanhueza, E. (1988) Emission of NO from savanna soils during rainy season. J. Geophys. Res.-Atmos.93(D11), 14193–14198

    Article  CAS  Google Scholar 

  • Kelly, D.P. (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull, Meadow (eds.) Companion to microbiology. pp. 363–386. Longman, London

    Google Scholar 

  • Killham, K. (1990) Nitrification in coniferous forest soils. Plant Soil128(1), 31–44

    Article  CAS  Google Scholar 

  • Kim, D.Y., Burger, J.A. (1997) Nitrogen transformations and soil processes in a wastewater-irrigated, mature Appalachian hardwood forest. Forest Ecol. Manag.90(1), 1–11. doi:10.1016/s0378-1127(96)03889-3

    Article  Google Scholar 

  • Knowles, R. (1982) Denitrification. Microbiol. Rev.46(1), 43–70

    CAS  Google Scholar 

  • Knowles, R. (1996) Denitrification: microbiology and ecology. Life Support Bioph. Sci.3(1–2), 31–34

    CAS  Google Scholar 

  • Konneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature437(7058), 543–546. doi:10.1038/nature03911

    Article  CAS  Google Scholar 

  • Kool, D.M., Wrage, N., Oenema, O., Harris, D., Van Groenigen, J.W. (2009) The O-18 signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Comm. Mass Sp.23(1), 104–108. doi:10.1002/rcm.3859

    Article  CAS  Google Scholar 

  • Koops, H.P., Bottcher, B., Moller, U.C., Pommereningroser, A., Stehr, G. (1991) Classification of 8 new species of ammonia-oxidizing bacteria:Nitrosomonas communis sp-novNitrosomonas ureae sp-novNitrosomonas aestuarii sp-novNitrosomonas marina sp-novNitrosomonas nitrosa sp-novNitrosomonas eutropha sp-novNitrosomonas oligotropha sp-nov andNitrosomonas halophila sp-nov. J. Gen. Microbiol.137, 1689–1699

    Article  CAS  Google Scholar 

  • Koops, H.P., Moller, U.C. (1992) The lithotropic ammonia-oxidizing bacteria. In: Ballows (ed.) Prokaryotes111,2625–2637. Springer, New York

    Google Scholar 

  • Kowalchuk, G.A., Stephen, J.R. (2001) Ammonia oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol.55, 485–529. doi:10.1146/annurev.micro.55.1.485

    Article  CAS  Google Scholar 

  • Laanbroek, H.J., Gerards, S. (1993) Competition for limiting amounts of oxygen betweenNitrosomonas europaea andNitrobacter winogradskyi grown in mixed continuous cultures. Arch. Microbiol.159(5), 453–459

    Article  CAS  Google Scholar 

  • Laughlin, R.J., Stevens, R.J. (2002) Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci. Soc. Am. J.66(5), 1540–1548

    Article  CAS  Google Scholar 

  • Laughlin, R.J., Stevens, R.J., Muller, C., Watson, C.J. (2008) Evidence that fungi can oxidize NH +4 to NO 3 in a grassland soil. Eur. J. Soil Sci.59(2), 285–291. doi:10.1111/j.1365-2389.2007.00995.x

    Article  CAS  Google Scholar 

  • Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, C. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature442, 806–809. doi:10.1038/nature04983

    Article  CAS  Google Scholar 

  • Li, D., Wang, X. (2008) Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. Atmos. Environ.42(19), 4747–4754. doi:10.1016/j.atmosenv.2008.01.042

    Article  CAS  Google Scholar 

  • Linn, D.M., Doran, J.W. (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J.48(6), 1267–1272

    Article  CAS  Google Scholar 

  • Luther, G.W., Brendel, P.J., Lewis, B.L., Sundby, B., Lefrancois, L., Silverberg, N., Nuzzio, D.B. (1998) Simultaneous measurement of O2, Mn, Fe, I-, and S(-II) in marine pore waters with a solid state voltammetric microelectrode. Limnol. Oceanogr.43(2), 325–333

    Article  CAS  Google Scholar 

  • Mahne, I., Tiedje, J.M. (1995) Criteria and methodology for identifying respiratory denitrifiers. Appl. Environ. Microbiol.61(3), 1110–1115

    CAS  Google Scholar 

  • Mogge, B., Kaiser, E.A., Munch, J.C. (1999) Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhöved Lake region: influence of organic fertilizers and land-use. Soil Biol. Biochem.31(9), 1245–1252

    Article  CAS  Google Scholar 

  • Morley, N., Baggs, E.M., Dorsch, P., Bakken, L. (2008) Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO 2 and O2 concentrations. Fems Microbiol. Ecol.65(1), 102–112. doi:10.1111/j.1574-6941.2008.00495.x

    Article  CAS  Google Scholar 

  • Mosier, A.R. (1998) Soil processes and global change. Biol. Fert. Soils27(3), 221–229

    Article  CAS  Google Scholar 

  • Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K. (1996) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil181(1), 95–108. doi:10.1007/bf00011296

    Article  CAS  Google Scholar 

  • Mulvaney, R.L., Khan, S.A., Mulvaney, C.S. (1997) Nitrogen fertilizers promote denitrification. Biol. Fert. Soils24(2), 211–220

    Article  CAS  Google Scholar 

  • Myers, R.J.K. (1975) Temperature effects on ammonification and nitrification in a tropical soil. Soil Biol. Biochem.7(2), 83–86. doi:10.1016/0038-0717(75)9-6

    Article  CAS  Google Scholar 

  • Myrold, D.D., Tiedje, J.M. (1985) Diffusional constraints on denitrification in soil. Soil Sci. Soc. Am. J.49(3), 651–657

    Article  CAS  Google Scholar 

  • Norton, J.M. (2008) Nitrification in agricultural soils. In: Schepers, J.S., Raun, W.R. (eds.) Nitrogen in agricultural soils. Agronomy Monograph No. 49, pp. 173–199. ASA-CSSA-SSSA, Madison, WI

    Google Scholar 

  • Norton, J.M., Alzerreca, J.J., Suwa, Y., Klotz, M.G. (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch. Microbiol.177(2), 139–149. doi:10.1007/s00203-001-0369-z

    Article  CAS  Google Scholar 

  • O'hara, G.W., Daniel, R.M. (1985) Rhizobial denitrification: A review. Soil Biol. Biochem.17(1), 1–9

    Article  Google Scholar 

  • Odu, C.T.I., Adeoye, K.B. (1970) Heterotrophic nitrification in soils - a preliminary investigation. Soil Biol. Biochem.2, 41–45

    Article  CAS  Google Scholar 

  • Papen, H., Vonberg, R., Hinkel, I., Thoene, B., Rennenberg, H. (1989) Heterotrophic nitrification byAlcaligenes faecalis: NO 2 , NO 3 , N2O, and NO production in exponentially growing cultures. Appl. Environ. Microbiol.55(8), 2068–2072

    CAS  Google Scholar 

  • Patureau, D., Zumstein, E., Delgenes, J.P., Moletta, R. (2000) Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microbial Ecol.39(2), 145–152. doi:10.1007/s002480000009

    Article  CAS  Google Scholar 

  • Payne, W.J. (1973) Reduction of nitrogenous oxides by microorganisms. Becterial. Reviews37(4), 409–452

    CAS  Google Scholar 

  • Perez, T., Trumbore, S.E., Tyler, S.C., Matson, P.A., Ortiz-Monasterio, I., Rahn, T., Griffith, D.W.T. (2001) Identifying the agricultural imprint on the global N2O budget using stable isotopes. J. Geophys. Res.-Atmos.106(D9), 9869–9878

    Article  CAS  Google Scholar 

  • Philippot, L. (2002) Denitrifying genes in bacterial and Archaeal genomes. Bioch. Biophys. Acta1577(3), 355–376

    Article  CAS  Google Scholar 

  • Philippot, L., Hallin, S., Borjesson, G., Baggs, E.M. (2009) Biochemical cycling in the rhizosphere having an impact on global change. Plant Soil321(1–2), 61–81. doi:10.1007/s11104-008-9796-9

    Article  CAS  Google Scholar 

  • Philippot, L., Hallin, S., Schloter, M. (2007) Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agron.96, 249–305. doi:10.1016/s0065-2113(07)96003-4

    Article  CAS  Google Scholar 

  • Philippot, L., Piutti, S., Martin-Laurent, F., Hallet, S., Germon, J.C. (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl. Environ. Microbiol.68(12), 6121–6128. doi:10.1128/aem.68.12.6121-6128.2002

    Article  CAS  Google Scholar 

  • Pina-Ochoa, E., Hogslund, S., Geslin, E., Cedhagen, T., Revsbech, N.P., Nielsen, L.P., Schweizer, M., Jorissen, F., Rysgaard, S., Risgaard-Petersen, N. (2010) Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc. Natl. Acad. Sci. USA107(3), 1148–1153. doi:10.1073/pnas.0908440107

    Article  CAS  Google Scholar 

  • Poth, M., Focht, D.D. (1985) N-15 Kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl. Environ. Microbiol.49(5), 1134–1141

    CAS  Google Scholar 

  • Prendergast-Miller, M.T., Baggs, E.M., Johnson, D. (2011) Nitrous oxide production by the ectomycorrhizal fungiPaxillus involutus andTylospora fibrillosa. Fems Microbiol. Lett.316(1), 31–35. doi:10.1111/j.1574-6968.2010.02187.x

    Article  CAS  Google Scholar 

  • Prosser, J.I. (1989) Autotrophic nitrification in bacteria. Adv. Microb. Physiol.30, 125–181

    Article  CAS  Google Scholar 

  • Prosser, J.I. (2005) Nitrification. In: Hillel, D. (ed.) Encyclopedia of soils in the environment, vol. 3. pp. 31–39. Elsevier Academic Press, Oxford

    Google Scholar 

  • Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A., Koops, H.P. (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int. J. Syst. Evol. Micr.53, 1485–1494. doi:10.1099/ijs.0.02638-0

    Article  CAS  Google Scholar 

  • Ravishankara, A.R., Daniel, J.S., Portmann, R.W. (2009) Nitrous oxide (N2O): The oominant ozone-depleting substance emitted in the 21st Century. Science326(5949), 123–125. doi:10.1126/science.1176985

    Article  CAS  Google Scholar 

  • Ritchie, G.A.F., Nicholas, D.J. (1972) Identification of sources of nitrous oxide produced by oxidative and reductive processes inNitrosomonas europaea. Biochem. J.126(5), 1181–1191

    CAS  Google Scholar 

  • Robertson, G.P., Tiedje, J.M. (1987) Nitrous oxide sources in aerobic soils: Nitrification, denitrification and other biological processes. Soil Biol. Biochem.19(2), 187–193

    Article  CAS  Google Scholar 

  • Robertson, L.A., Kuenen, J.G. (1990) Combined heterotrophic nitrification and aerobic denitrification inThiosphaera pantotropha and other bacteria. Ant. Leew. Int. J. G. Mol. Microb.57(3), 139–152

    CAS  Google Scholar 

  • Robertson, L.A., Vanniel, E.W.J., Torremans, R.A.M., Kuenen, J.G. (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures ofThiosphaera pantotropha. Appl. Environ. Microbiol.54(11), 2812–2818

    CAS  Google Scholar 

  • Rotthauwe, J.H., Witzel, K.P., Liesack, W. (1997) The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol.63(12), 4704–4712

    CAS  Google Scholar 

  • Rutting, T., Huygens, D., Muller, C., Cleemput, O., Godoy, R., Boeckx, P. (2008) Functional role of DNRA and nitrite reduction in a pristine south ChileanNothofagus forest. Biogeochemistry90(3), 243–258. doi:10.1007/s10533-008-9250-3

    Google Scholar 

  • Rutting, T., Clough, T.J., Muller, C., Lieffering, M., Newton, P.C.D. (2010) Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture. Global Change Biol.16(9), 2530–2542. doi:10.1111/j.1365-2486.2009.02089.x

    Google Scholar 

  • Ryden, J.C., Lund, L.J. (1980) Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units. Soil Sci. Soc. Am. J.44(3), 505–511

    Article  CAS  Google Scholar 

  • Sahrawat, K.L. (1982) Nitrification in some tropical soils. Plant Soil65(2), 281–286

    Article  CAS  Google Scholar 

  • Sahrawat, K.L. (1996) Nitrification inhibitors, with emphasis on natural products, and the persistence of nitrogen in the soil. In: Ahmad, N. (ed.) Nitrogen economy in tropical soils. pp. 379–388. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Schipper, L.A., Vojvodić-Vuković, M. (2000) Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecol. Engn.14(3), 269–278

    Article  Google Scholar 

  • Schjonning, P., Thomsen, I.K., Moldrup, P., Christensen, B.T. (2003) Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Sci. Soc. Am. J.67(1), 156–165

    Article  CAS  Google Scholar 

  • Schleper, C., Jurgens, G., Jonuscheit, M. (2005) Genomic studies of uncultivated archaea. Nat. Rev. Microbiol.3(6), 479–488. doi:10.1038/nrmicro1159

    Article  CAS  Google Scholar 

  • Schmidt, I., van Spanning, R.J.M., Jetten, M.S.M. (2004) Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiol.-SGM150, 4107–4114. doi:10.1099/mic.0.27382-0

    Article  CAS  Google Scholar 

  • Schmidt, C.S., Richardson, D.J., Baggs, E.M. (2011) Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils. Soil Biol. Biochem.43(7), 1607–1611. doi:10.1016/j.soilbio.2011.02.015

    Google Scholar 

  • Scholefield, D., Hawkins, J.M.B., Jackson, S.M. (1997) Use of a flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. Soil Biol. Biochem.29(9–10), 1337–1344

    Article  CAS  Google Scholar 

  • Seitzinger, S., Harrison, J.A., Bohlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C., Van Drecht, G. (2006) Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl.16(6), 2064–2090

    Article  CAS  Google Scholar 

  • Shaw, L.J., Nicol, G.W., Smith, Z., Fear, J., Prosser, J.I., Baggs, E.M. (2006) Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol.8(2), 214–222. doi:10.1111/j.1462-2920.2005.00882.x

    Google Scholar 

  • Shi, W., Norton, J.M. (2000) Effect of long-term, biennial, fall-applied anhydrous ammonia and nitrapyrin on soil nitrification. Soil Sci. Soc. Am. J.64(1), 228–234

    Article  CAS  Google Scholar 

  • Shoun, H., Kim, D.H., Uchiyama, H., Sugiyama, J. (1992) Dinitrification by fungi. Fems Microbiol. Lett.94(3), 277–281. doi:10.1111/j.1574-6968.1992.tb05331.x

    Google Scholar 

  • Silver, W.L., Herman, D.J., Firestone, M.K. (2001) Dissimilatory Nitrate Reduction to Ammonium in Upland Tropical Forest Soils. Ecology82(9), 2410–2416

    Article  Google Scholar 

  • Skiba, U., Smith, K.A. (2000) The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere2(3–4), 379–386

    CAS  Google Scholar 

  • Smith, J.H., Gilbert, R.G., Miller, J.B. (1976) Redox potentials and denitrification in a cropped potato processing waste-water disposal field. J. Environ. Qual.5(4), 397–399

    Article  CAS  Google Scholar 

  • Smith, K.A. (1980) A model of the extent of anaerobic zones in aggregated soils and its potential application to estimates of denitrification. J. Soil Sci.31(2), 263–277

    Article  CAS  Google Scholar 

  • Smith, K.A., McTaggart, I.P., Tsuruta, H. (1997) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manage.13(4), 296–304

    Article  Google Scholar 

  • Smith, M.S., Tiedje, J.M. (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol. Biochem.11(3), 261–267. doi:10.1016/0038-0717(79)90071-3

    Article  CAS  Google Scholar 

  • Smith, P., Goulding, K.W., Smith, K.A., Powlson, D.S., Smith, J.U., Falloon, P., Coleman, K. (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr. Cycl. Agroecosys.60(1–3), 237–252. doi:10.1023/a:1012617517839

    Article  Google Scholar 

  • Sorai, M., Yoshida, N., Ishikawa., M. (2007) Biogeochemical simulation of nitrous oxide cycle based on the major nitrogen processes. J. Geophys. Res.-Biogeo.112, G01006 doi:10.1029/2005JG000109

  • Sorokin, D., Tourova, T., Schmid, M.C., Wagner, M., Koops, H.P., Kuenen, J.G., Jetten, M. (2001) Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch. Microbiol.176(3), 170–177

    Article  CAS  Google Scholar 

  • Spieck, E., Muller, S., Engel, A., Mandelkow, E., Patel, H., Bock, E. (1996) Two-dimensional structure of membrane-bound nitrite oxidoreductase from Nitrobacter hamburgensis. J. Struct. Biol.117(2), 117–123

    Article  CAS  Google Scholar 

  • Stark, J.M., Firestone, M.K. (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol.61(1), 218–221

    CAS  Google Scholar 

  • Stein, L.Y., Arp, D.J., Hyman, M.R. (1997) Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability. Appl. Environ. Microbiol.63(11), 4588–4592

    CAS  Google Scholar 

  • Stevens, R.J., Laughlin, R.J., Malone, J.P. (1998) Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol. Biochem.30(8–9), 1119–1126

    Article  CAS  Google Scholar 

  • Strong, D.T., Sale, P.W.G., Helyar, K.R. (1999) The influence of the soil matrix on nitrogen mineralisation and nitrification. IV. Texture. Aus. J. Soil Res.37(2), 329–344

    Article  Google Scholar 

  • Subbarao, G.V., Ito, O., Sahrawat, K.L., Berry, W.L., Nakahara, K., Ishikawa, T., Watanabe, T., Suenaga, K., Rondon, M., Rao, I.M. (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit. Rev. Plant Sci.25(4), 303–335. doi:10.1080/07352680600794232

    Article  CAS  Google Scholar 

  • Sutka, R.L., Ostrom, N.E., Ostrom, P.H., Gandhi, H., Breznak, J.A. (2003) Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Comm. Mass Sp.17(7), 738–745. doi:10.1002/rcm.968

    Article  CAS  Google Scholar 

  • Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T., Urushigawa, Y. (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Res.28(7), 1523–1532

    Article  CAS  Google Scholar 

  • Suzuki, I., Dular, U., Kwok, S.C. (1974) Ammonia or ammonium ion as substrate for oxidation byNitrosomonas europaea cells and extracts. J. Bacteriol.120(1), 556–558

    CAS  Google Scholar 

  • Takaya, N. (2009) Response to hypoxia, reduction of electron acceptors, and subsequent survival by Filamentous fungi. Biosci. Biotechnol. Biochem.73(1), 1–8. doi:10.1271/bbb.80487

    Article  CAS  Google Scholar 

  • Tenuta, M., Beauchamp, E.G. (1996) Denitrification following herbicide application to a grass sward. Can.J. Soil Sci.76(1), 15–22

    Article  CAS  Google Scholar 

  • Tiedje, J.M. (1988) Ecology of denitrification and the dissimilatory nitrate reduction to ammonium. In: Zehnder, J.B. (ed.) Biology of anaerobic microorganisms. pp. 179–244. Wiley, New York

    Google Scholar 

  • Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., Schleper, C. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol.7(12), 1985–1995. doi:10.1111/j.1462-2920.2005.00906.x

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (US EPA) (2009) National Primary Drinking Water Regulations. Report No. EPA 816-F-09-0004. United States Enveronmental Protection Agency.

    Google Scholar 

  • van Cleemput, O. (1998) Subsoils: chemo- and biological denitrification, N2O and N2 emissions. Nutr. Cycl. Agroecosys.52(2–3), 187–194

    Article  Google Scholar 

  • Vitousek, P.M., Gosz, J.R., Grier, C.C., Melillo, J.M., Reiners, W.A. (1982) A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol. Monogr.52(2), 155–177. doi:10.2307/1942609

    Article  CAS  Google Scholar 

  • Vitousek, P.M., Hattenschwiler, S., Olander, L., Allison, S. (2002) Nitrogen and nature. Ambio31(2), 97–101. doi:10.1639/0044-7447(2002)031[0097:nan]2.0.co;2

    Google Scholar 

  • Wan, Y.J., Ju, X.T., Ingwersen, J., Schwarz, U., Stange, C.F., Zhang, F.S., Streck, T. (2009) Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil. Soil Sci. Soc. Am. J.73(1), 102–112. doi:10.2136/sssaj2007.0419

    Article  CAS  Google Scholar 

  • Wang, W.J., Dalal, R.C., Moody, P.W., Smith, C.J. (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem.35(2), 273–284

    Article  CAS  Google Scholar 

  • Ward, B.B. (1986) Nitrification in marine environments. In: Prosser, J.I. (ed.) Nitrification. pp. 157–184. IRL Press, Oxford

    Google Scholar 

  • Ward, B.B. (2008) Nitrification in marine systems. In: Capone, D.G., Bronk, D.A., Muholland, M.R., Carpenter, E.J. (eds.) Nitrogen in the Marine Environment. vol. 5, pp. 199–261. Elsevier, Amsterdam, The Netherland

    Chapter  Google Scholar 

  • Ward, B.B., Zafiriou, O.C. (1988) Nitrification and nitric-oxide in the oxygen minimum of the eastern tropical north pacific. Deep Seas Res. Pt A35(7), 1127–1142

    Article  CAS  Google Scholar 

  • Watson, S.W., Bock, E., Valois, F.W., Waterbury, J.B., Schlosser, U. (1986) Nitrospira marina gen-nov sp-nov - a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol.144(1), 1–7

    Article  Google Scholar 

  • World Health Organization (WHO) (2007) Nitrate and nitrite in drinking-water. World Health Organization of the United Nations.

    Google Scholar 

  • Wood, P.M. (1986) Nitrification as an energy source In: Prosser, J.I. (ed.) Nitrification. pp. 39–62. IRL Press, Oxford

    Google Scholar 

  • Wrage, N., van Groenigen, J.W., Oenema, O., Baggs, E.M. (2005) A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Comm. Mass Sp.19(22), 3298–3306. doi:10.1002/rcm.2191

    Article  CAS  Google Scholar 

  • Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O. (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem.33(12–13), 1723–1732

    Article  CAS  Google Scholar 

  • Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G.J., Middelburg, J.J., Schouten, S., Damste, J.S.S. (2006) Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. USA103, 12317–12322. doi:10.1073/pnas.0600756103

    Article  CAS  Google Scholar 

  • Wuebbles, D.J. (2009) Nitrous Oxide: No Laughing Matter. Science326(5949), 56–57. doi:10.1126/science.1179571

    Article  CAS  Google Scholar 

  • Xiong, Z.Q., Xing, G.X., Zhu, Z.L. (2007) Nitrous oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere17(2), 146–155

    Article  CAS  Google Scholar 

  • Ye, R.W., Averill, B.A., Tiedje, J.M. (1994) Denitrification: Production and consumption of nitric oxide. Appl. Environ. Microbiol.60(4), 1053–1058

    CAS  Google Scholar 

  • Yin, S.X., Chen, D., Chen, L.M., Edis, R. (2002) Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils. Soil Biol. Biochem.34(8), 1131–1137. doi:10.1016/s0038-0717(02)00049-4

    Article  CAS  Google Scholar 

  • Yoshida, T., Alexander, M. (1971) Hydroxylamine oxidation byNitrosomonas europea. Soil Sci.111(5), 307–312

    Article  CAS  Google Scholar 

  • Zart, D., Bock, E. (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch. Microbiol.169(4), 282–286

    Article  CAS  Google Scholar 

  • Zumft, W.G. (1993) The biological role of nitric oxide in bacteria. Arch. Microbiol.160(4), 253–264

    Article  CAS  Google Scholar 

  • Zumft, W.G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R.61(4), 533–616

    CAS  Google Scholar 

  • Zumft, W.G., Korner, H. (1997) Enzyme diversity and mosaic gene organization in denitrification. Ant. Leew. Int. J. G. Mol. Microb.71(1–2), 43–58

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ussiri, D., Lal, R. (2013). Formation and Release of Nitrous Oxide from Terrestrial and Aquatic Ecosystems. In: Soil Emission of Nitrous Oxide and its Mitigation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5364-8_3

Download citation

Publish with us

Policies and ethics