On Argument Strength

Part of the Synthese Library book series (SYLI, volume 362)


Everyday life reasoning and argumentation is defeasible and uncertain. I present a probability logic framework to rationally reconstruct everyday life reasoning and argumentation. Coherence in the sense of de Finetti is used as the basic rationality norm. I discuss two basic classes of approaches to construct measures of argument strength. The first class imposes a probabilistic relation between the premises and the conclusion. The second class imposes a deductive relation. I argue for the second class, as the first class is problematic if the arguments involve conditionals. I present a measure of argument strength that allows for dealing explicitly with uncertain conditionals in the premise set.


Probability Logic Conditional Event Modus Ponens Conclusion Probability Probability Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by the Alexander von Humboldt Foundation, the German Research Foundation project PF 740/2-1 “Rational reasoning with conditionals and probabilities. Logical foundations and empirical evaluation” (Project leader: Niki Pfeifer; Project within the DFG Priority Program SPP 1516 “New Frameworks of Rationality”) and the Austrian Science Fund project P20209 “Mental probability logic” (Project leader: Niki Pfeifer).


  1. Adams, E. W. (1975). The logic of conditionals. Dordrecht: Reidel.Google Scholar
  2. Biazzo, V., & Gilio, A. (2000). A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. International Journal of Approximate Reasoning, 24(2–3), 251–272.CrossRefGoogle Scholar
  3. Carnap, R. (1962). Logical foundations of probability (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  4. Christensen, D. (1999). Measuring confirmation. Journal of Philosophy, 96, 437–461.CrossRefGoogle Scholar
  5. Coletti, G., & Scozzafava, R. (2002). Probabilistic logic in a coherent setting. Dordrecht: Kluwer.CrossRefGoogle Scholar
  6. Crupi, V., Tentori, K., & Gonzales, M. (2007). On Bayesian measures of confirmation. Philosophy of Science, 74, 229–252.CrossRefGoogle Scholar
  7. De Finetti, B. (1974). Theory of probability (Vols. 1, 2). Chichester: Wiley. (Original work published 1970)Google Scholar
  8. De Finetti, B. (1980). Foresight: Its logical laws, its subjective sources (1937). In H. J. Kyburg & H. E. Smokler (Eds.), Studies in subjective probability (pp. 55–118). Huntington: Robert E. Krieger.Google Scholar
  9. Douven, I. (2012). Learning conditional information. Mind & Language, 27(3), 239–263.CrossRefGoogle Scholar
  10. Finch, H. A. (1960). Confirming power of observations metricized for decisions among hypotheses. Philosophy of Science, 27, 293–207 (part I), 391–404 (part II).Google Scholar
  11. Fitelson, B. (1999). The plurality of Bayesian measures of confirmation and the problem of measure sensitivity. Philosophy of Science, 66, 362–378.CrossRefGoogle Scholar
  12. Fugard, A. J. B., Pfeifer, N., Mayerhofer, B., & Kleiter, G. D. (2011). How people interpret conditionals: Shifts towards the conditional event. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(3), 635–648.CrossRefGoogle Scholar
  13. Haenni, R. (2009). Probabilistic argumentation. Journal of Applied Logic, 7(2), 155–176.CrossRefGoogle Scholar
  14. Hahn, U., & Oaksford, M. (2006). A normative theory of argument strength. Informal Logic, 26, 1–22.Google Scholar
  15. Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: A Bayesian approach to reasoning fallacies. Psychological Review, 114(3), 704–732.CrossRefGoogle Scholar
  16. Hailperin, T. (1996). Sentential probability logic: Origins, development, current status, and technical applications. Bethlehem: Lehigh University Press.Google Scholar
  17. Kemeny, J., & Oppenheim, P. (1952). Degrees of factual support. Philosophy of Science, 19, 307–324.CrossRefGoogle Scholar
  18. Lad, F. (1996). Operational subjective statistical methods: A mathematical, philosophical, and historical introduction. New York: Wiley.Google Scholar
  19. Mortimer, H. (1988). The logic of induction. Paramus: Prentice Hall.Google Scholar
  20. Nozick, R. (1981). Philosophical explanations. Oxford: Clarendon.Google Scholar
  21. Osherson, D. N., Smith, E. E., Wilkie, O., López, A., & Shafir, E. (1990). Category-based induction. Psychological Review, 97(2), 185–200.CrossRefGoogle Scholar
  22. Pfeifer, N. (2007). Rational argumentation under uncertainty. In G. Kreuzbauer, N. Gratzl, & E. Hiebl (Eds.), Persuasion und Wissenschaft: Aktuelle Fragestellungen von Rhetorik und Argumentationstheorie (pp. 181–191). Wien: LIT.Google Scholar
  23. Pfeifer, N. (2008). A probability logical interpretation of fallacies. In G. Kreuzbauer, N. Gratzl, & E. Hiebl (Eds.), Rhetorische Wissenschaft: Rede und Argumentation in Theorie und Praxis (pp. 225–244). Wien: LIT.Google Scholar
  24. Pfeifer, N. (2012). Experiments on Aristotle’s thesis: Towards an experimental philosophy of conditionals. The Monist, 95(2), 223–240.Google Scholar
  25. Pfeifer, N., & Kleiter, G. D. (2003). Nonmonotonicity and human probabilistic reasoning. In Proceedings of the 6th workshop on uncertainty processing, Hejnice, September 24–27, 2003 (pp. 221–234). Prague: Oeconomica.Google Scholar
  26. Pfeifer, N., & Kleiter, G. D. (2005). Coherence and nonmonotonicity in human reasoning. Synthese, 146(1–2), 93–109.CrossRefGoogle Scholar
  27. Pfeifer, N., & Kleiter, G. D. (2006a). Inference in conditional probability logic. Kybernetika, 42, 391–404.Google Scholar
  28. Pfeifer, N., & Kleiter, G. D. (2006b). Is human reasoning about nonmonotonic conditionals probabilistically coherent? In Proceedings of the 7th workshop on uncertainty processing, Mikulov, September 16–20, 2006 (pp. 138–150).Google Scholar
  29. Pfeifer, N., & Kleiter, G. D. (2007). Human reasoning with imprecise probabilities: Modus ponens and denying the antecedent. In G. de Cooman, J. Vejnarová, & M. Zaffalon (Eds.), 5th International symposium on imprecise probability: Theories and applications (pp. 347–356). Prague: SIPTA.Google Scholar
  30. Pfeifer, N., & Kleiter, G. D. (2009). Framing human inference by coherence based probability logic. Journal of Applied Logic, 7(2), 206–217.CrossRefGoogle Scholar
  31. Pfeifer, N., & Kleiter, G. D. (2010). The conditional in mental probability logic. In M. Oaksford & N. Chater (Eds.), Cognition and conditionals: Probability and logic in human thought (pp. 153–173). Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Pfeifer, N., & Kleiter, G. D. (2011). Uncertain deductive reasoning. In K. Manktelow, D. E. Over, & S. Elqayam (Eds.), The science of reason: A Festschrift for Jonathan St B.T. Evans (pp. 145–166). Hove: Psychology Press.Google Scholar
  33. Rips, L. J. (2001). Two kinds of reasoning. Psychological Science, 12(2), 129–134.CrossRefGoogle Scholar
  34. Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations