Skip to main content

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 7479 Accesses

Abstract

In this chapter, we study symplectic manifolds. We start with the Theorem of Darboux, which states that all symplectic structures of a given dimension are locally equivalent. Thus, in sharp contrast to the situation in Riemannian geometry, symplectic manifolds of the same dimension can at most differ globally. The second important observation is that a symplectic structure provides a duality between smooth functions and certain vector fields, called Hamiltonian vector fields. As a consequence, one obtains the notion of Poisson structure. Given the great importance of Poisson structures both in mathematics and in physics, we go beyond the symplectic case and give a brief introduction to general Poisson manifolds, including a proof of the Symplectic Foliation Theorem. Two classes of symplectic manifolds are discussed in detail: cotangent bundles, because they serve as a mathematical model of phase space, and orbits of the coadjoint representation of a Lie group, because they show up in the study of systems with symmetries. Moreover, we show that the coadjoint orbits coincide with the symplectic leaves of the Lie-Poisson structure. Next, we discuss coisotropic submanifolds, present a number of natural generalizations of the Darboux Theorem and give an introduction to general symplectic reduction. We introduce the concept of generating function and make some elementary remarks on the group of symplectomorphisms. The last section is devoted to an introduction to Morse theory, which can be naturally formulated in the language of symplectic geometry. Methods of Morse theory are of special importance in the study of Hamiltonian systems, in particular, for the discussion of qualitative dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a huge field of research called symplectic topology, which deals with the study of global invariants of symplectic manifolds. For a nice intuitive introduction to this field we refer the reader to an article of Arnold [22]. There is a number of detailed expositions of this subject, see e.g. [206].

  2. 2.

    A symplectic vector bundle is a real vector bundle E endowed with a section ω in ⋀2 E ∗ which is fibrewise symplectic.

  3. 3.

    See Sect. 3.4 for the notation.

  4. 4.

    A vertical vector bundle morphism of TM with this property is called an almost complex structure on M.

  5. 5.

    With the index LH standing for locally Hamiltonian.

  6. 6.

    The notion of Φ-relation extends in an obvious way from vector fields to multivector fields, cf. Definition 2.3.6/1.

  7. 7.

    Note that the statement of the proposition is not about the maximal integral manifolds of \(D^{\omega_{N}}\).

  8. 8.

    That is, an embedded submanifold of codimension 1.

  9. 9.

    A hyperplane distribution on P is a regular distribution E⊂TP of codimension one.

  10. 10.

    We omit the natural projections to the factors of the direct product.

  11. 11.

    U 0 is the union of the subsets of V obtained by applying the Tube Lemma to every point of N.

  12. 12.

    This notion has been already announced in Remark 6.1.3.

  13. 13.

    A sequence of mappings φ i :N→P converges to a mapping φ:N→P iff for every compact K⊂N and every ε>0 there exists n 0 such that sup m∈K d(φ n (m),φ(m))<ε for all n>n 0; here d is some metric on P, compatible with the topology.

  14. 14.

    Equivalently, a sequence {φ i } converges to φ in the C 1-topology iff \(\varphi_{i}'\) converges to φ′ in the C 0-topology on C ∞(TN,TP).

  15. 15.

    Since M is compact, the C 1-topology on \(\mathfrak{X}_{\mathrm{LH}}(M,\omega)\) allows for a norm, defined by taking the maximum over the usual C 1-norms of the local representatives of α in some chosen finite atlas, see e.g. [233, 234].

  16. 16.

    A complete metrizable locally convex vector space.

  17. 17.

    A Lie group modelled on a Fréchet space.

  18. 18.

    With Φ t playing the role of φ in the proof of Proposition 8.8.4.

  19. 19.

    This was the affirmative answer to the so-called flux conjecture, see also [179]. For noncompact M, the flux group need not be discrete, see [205].

  20. 20.

    That is, ∫ M fΩ=0.

  21. 21.

    A group G which does not contain normal subgroups besides and G.

  22. 22.

    That is, symplectomorphisms which outside a compact set coincide with the identical mapping.

  23. 23.

    That is, f is a Morse function and is a Riemannian metric on M such that for every pair of critical points m 1, m 2 the stable manifold of m 1 with respect to the gradient vector field ∇f is transversal to the unstable manifold of m 2.

  24. 24.

    See e.g. [55] for this notion.

  25. 25.

    This is equivalent to the condition \(\ker (\operatorname{Hess}_{m}(f) ) = \mathrm {T}_{m} N\).

References

  1. Arnold, V.I.: Mathematische Methoden der klassischen Mechanik. Birkhäuser, Basel (1988)

    Google Scholar 

  2. Arnold, V.I.: Symplectic geometry and topology. J. Math. Phys. 41(6), 3307–3343 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Arnold, V.I., Givental, A.B.: Symplectic geometry. In: Arnold, V.I., Novikov, S.P. (eds.) Dynamical Systems IV. Symplectic Geometry and Its Applications. Springer, Berlin (2001)

    Google Scholar 

  4. Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv. 53, 174–227 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banyaga, A.: The Structure of Classical Diffeomorphism Groups. Mathematics and Its Applications, vol. 400. Kluwer Academic, Norwell (1997)

    MATH  Google Scholar 

  6. Banyaga, A., Hurtubise, D.E.: A proof of the Morse-Bott lemma. Expo. Math. 22, 365–373 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benenti, S.: The category of symplectic reductions. In: Benenti, S., Francaviglia, M., Lichnerowicz, A. (eds.) Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, pp. 39–91. Acta Academiae Scientiarum Taurinensis, Torino (1983)

    Google Scholar 

  8. Benenti, S., Tulczyjew, W.M.: Remarques sur les réductions symplectiques. C. R. Acad. Sci. Paris 294, 561–564 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Bott, R.: Morse theory indomitable. Publ. Math. Inst. Hautes Études Sci. 68, 99–114 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139. Springer, Berlin (1997)

    MATH  Google Scholar 

  11. Cannas da Silva, A.: Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2008)

    Google Scholar 

  12. Dittmann, J., Rudolph, G.: Canonical realizations of Lie algebras associated with foliated coadjoint orbits. Ann. Inst. Henri Poincaré 43(3), 251–267 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frankel, Th.: Critical submanifolds of the classical groups and Stiefel manifolds. In: Cairns, S.S. (ed.) Differential and Combinatorial Topology, pp. 37–53. Princeton University Press, Princeton (1965)

    Google Scholar 

  15. Freifeld, C.: One-parameter subgroups do not fill a neighbourhood of the identity in an infinite-dimensional Lie (pseudo-) group. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres. 1967 Lectures in Mathematics and Physics, pp. 538–543. Benjamin, Elmsford (1968)

    Google Scholar 

  16. Geiges, H.: Contact geometry. In: Dillen, F.J.E., Verstraelen, L.C.A. (eds.) Handbook of Differential Geometry, vol. II, pp. 315–382. Elsevier, Berlin (2005)

    Google Scholar 

  17. Geiges, H.: An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, vol. 109. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  18. Hofer, H.: On the topological properties of symplectic maps. Proc. R. Soc. Edinb. 115, 25–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  20. Hutchings, M.: Lecture notes on Morse homology (with an eye towards Floer theory and pseudoholomorphic curves). UC Berkeley preprint (2002). Available at Michael Hutchings’ homepage, http://math.berkeley.edu/~hutching/

  21. Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture Notes in Physics, vol. 107. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  22. Lalonde, F., McDuff, D.: The geometry of symplectic energy. Ann. Math. 141, 349–371 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lalonde, F., McDuff, D., Polterovich, L.: On the flux conjectures. In: Geometry, Topology, and Dynamics. CRM Proc. Lecture Notes, vol. 15, pp. 69–85. AMS, Providence (1998)

    Google Scholar 

  24. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  25. Lie, S.: Theorie der Transformationsgruppen I. Teubner, Leipzig (1888). Written with the help of Friedrich Engel

    Google Scholar 

  26. Lie, S.: Theorie der Transformationsgruppen II. Teubner, Leipzig (1890). Written with the help of Friedrich Engel

    Google Scholar 

  27. Lie, S.: Theorie der Transformationsgruppen III. Teubner, Leipzig (1893). Written with the help of Friedrich Engel

    Google Scholar 

  28. McDuff, D.: Symplectic diffeomorphisms and the flux homomorphism. Invent. Math. 77, 353–366 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  30. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  31. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: DeWitt, B.S., Stora, R. (eds.) Relativité, Groupes et Topologie II. Les Houches, Session XL, 1983, pp. 1007–1057. North-Holland, Amsterdam (1984)

    Google Scholar 

  32. Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)

    Article  MATH  Google Scholar 

  33. Omori, H.: Infinite Dimensional Lie Transformation Groups. Lecture Notes in Mathematics, vol. 427. Springer, Berlin (1974)

    MATH  Google Scholar 

  34. Ono, K.: Floer-Novikov cohomology and the flux conjecture. Geom. Funct. Anal. 16, 981–1020 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Palais, R.S.: The Classification of G-Spaces. Mem. Am. Math. Soc., vol. 36 (1960)

    Google Scholar 

  36. Palais, R.S.: On the existence of slices for actions of non-compact Lie groups. Ann. of Math. (2) 73, 295–323 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  37. Palais, R.S.: The Morse lemma for Banach spaces. Bull. Am. Math. Soc. 75, 968–971 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  38. Polterovich, L.: The Geometry of the Group of Symplectic Diffeomorphisms. Birkhäuser, Basel (2001)

    Book  Google Scholar 

  39. Schmid, R.: Die Symplektomorphismengruppe als Fréchet-Lie-Gruppe. Dissertation, Universität Zürich, Juris Druck und Verlag Zürich (1978), in German

    Google Scholar 

  40. Schmid, R.: Infinite dimensional Lie groups with applications to mathematical physics. J. Geom. Symmetry Phys. 1, 54–120 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Schwarz, M.: Morse Homology. Progress in Mathematics, vol. 111. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  42. Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  43. Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung. Springer, Berlin (2007), in German

    MATH  Google Scholar 

  44. Weinstein, A.: Symplectic manifolds and their Lagrangian submanifolds. Adv. Math. 6, 329–346 (1971)

    Article  MATH  Google Scholar 

  45. Weinstein, A.: Lectures on Symplectic Manifolds. CBMS Regional Conference Series in Mathematics, vol. 29. AMS, Providence (1977)

    MATH  Google Scholar 

  46. Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18, 523–557 (1983)

    MATH  Google Scholar 

  47. Weinstein, A.: Coisotropic calculus and Poisson groupoids. J. Math. Soc. Jpn. 40, 705–727 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rudolph, G., Schmidt, M. (2013). Symplectic Geometry. In: Differential Geometry and Mathematical Physics. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5345-7_8

Download citation

Publish with us

Policies and ethics