Skip to main content

Conceptual Soil-Regolith Toposequence Models to Support Soil Survey and Land Evaluation

  • Chapter
  • First Online:

Abstract

Soil maps and the accompanying soil survey report are used to portray the spatial variation of soils in landscapes by indicating what soils, their proportion and their soil properties are likely to occur at a particular location or within a soil map unit. Soil surveyors intuitively understand this soil variation and how it may occur by reading the landscape. However, soil maps and soil survey reports are often too technical and not easily understood by land managers and decision-makers who are not specialist soil scientists. This chapter demonstrates how conceptual soil-regolith toposequence models can be used to describe (supporting soil survey map data and reports), explain (providing an understanding of the processes) and predict (supporting land evaluation) soil spatial variability in a range of complex landscapes. Case studies from Australia and Brunei are provided to illustrate how soil toposequence models are critical to explain, predict and solve practical land use problems, especially in complex soil-landscape environments. These conceptual models provide the following critical data to support land evaluation and ­management decisions by illustrating soil properties that are changing in time and space, which is especially important in salt-affected and acid sulphate soils (e.g. seasonal and climatic changes in occurrences of salt efflorescences), and the most suitable approaches for characterising, monitoring, predicting, managing and displaying soil changes for environmental impact assessments, pollution incidents, waste management and technology support.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Conacher AJ, Darylmple JB (1977) The nine unit landsurface model and pedogeomorphic research. Geoderma 18:127–144

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M (1997) The value of world’s service and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenco J, Matson PA, Mooney HA, Postel S, Schneider SH, Tilman D, Woodwell GM (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues Ecol 2:1–16

    Google Scholar 

  • EAD (2009) Soil survey of Abu Dhabi Emirate-Extensive Survey, vol I. Environment Agency-Abu Dhabi, Abu Dhabi, pp xx, 506

    Google Scholar 

  • Fitzpatrick RW, Merry RH (2002) Soil-regolith models of soil-water landscape degradation: development and application. In: McVicar TR, Rui L, Fitzpatrick RW, Changming L (eds) Regional water and soil assessment for managing sustainable agriculture in China and Australia, vol 84. Australian Centre for International Agricultural Research, Canberra, pp 130–138. http://www.eoc.csiro.au/aciar/book/PDF/Monograph_84_Chapter_09.pdf

    Google Scholar 

  • Fitzpatrick RW, Grealish G, Shand P, Simpson SL, Merry RH, Raven MD (2009) Acid sulfate soil assessment in Finniss River, Currency Creek, Black Swamp and Goolwa Channel, South Australia. Prepared for the Murray Darling Basin Authority. CSIRO Land and Water Science report 26/09. CSIRO, Adelaide, p 213. http://www.clw.csiro.au/publications/science/2009/sr26-09.pdf

  • Fitzpatrick RW, Grealish G, Chappell A, Marvanek S, Shand P (2010) Spatial variability of subaqueous and terrestrial acid sulfate soils and their properties, for the Lower Lakes, South Australia. Report prepared for the SA Department of Environment and Natural Resources (DENR). Client report R-689-1-15: CSIRO Sustainable Agriculture National Research Flagship, p 122. http://www.clw.csiro.au/publications/science/2010/SAF-Lower-Lakes-SA-sulfate-soils.pdf

  • Fitzpatrick RW, Shand P, Hicks W (2011) Technical guidelines for assessment and management of inland freshwater areas impacted by acid sulfate soils. CSIRO Land and Water Science Report, 05/11. p 160. http://www.clw.csiro.au/publications/science/2011/sr05-11.pdf

  • Fritsch E, Fitzpatrick RW (1994) Interpretation of soil features produced by ancient and modern processes in degraded landscapes. I. A new method for constructing conceptual soil-water-landscape models. Aust J Soil Res 32:880–885

    Article  Google Scholar 

  • Grealish GJ, Fitzpatrick RW, Ringrose-Voase AJ (2007a) Soil fertility evaluation/advisory service in Negara Brunei Darussalam. Report P1-2-Soil properties and soil identification key for major soil types. Science report 76/07, CSIRO Land and Water, Australia

    Google Scholar 

  • Grealish GJ, Ringrose-Voase AJ, Fitzpatrick RW (2007b) Soil fertility evaluation/advisory service in Negara Brunei Darussalam report P1-1.2-Soil Maps. Science report 75/07, CSIRO Land and Water, Australia

    Google Scholar 

  • Grealish GJ, Fitzpatrick RW, Ringrose-Voase AJ, Hicks W (2008) Brunei: summary of acid sulfate soils. In: Fitzpatrick RW, Shand P (eds) Inland acid sulfate soil systems across Australia. CRC LEME open file report no. 249 (Thematic volume) CRC LEME, Perth, Australia, pp 301–309

    Google Scholar 

  • Milne G (1935a) Composite units for the mapping of complex soil associations. Trans 3rd Int Congr Soil Sci Oxf 1:345–347

    Google Scholar 

  • Milne G (1935b) Some suggested units of classification and mapping particularly for East African soils. Soil Res 4:183–198

    CAS  Google Scholar 

Download references

Acknowledgements

The soil fertility evaluation soil survey project was commissioned and funded by the Department of Agriculture, Negara Brunei Darussalam, and the assessment of acid sulphate soils was commissioned and funded by the Department of Environment and Heritage, South Australia. We would like to acknowledge the input of many staff from CSIRO and the funding organisations that assisted with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Grealish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grealish, G., Fitzpatrick, R.W., King, P., Shahid, S.A. (2013). Conceptual Soil-Regolith Toposequence Models to Support Soil Survey and Land Evaluation. In: Shahid, S., Taha, F., Abdelfattah, M. (eds) Developments in Soil Classification, Land Use Planning and Policy Implications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5332-7_7

Download citation

Publish with us

Policies and ethics