Skip to main content

Discrete Impact Modeling of Inter- and Intra-laminar Failure in Composites

  • Chapter
  • First Online:
Dynamic Failure of Composite and Sandwich Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 192))

Abstract

The goal of this study is to initiate a “test-calculation dialogue” on low velocity/low energy impact tests in laminated composites. The different types of impact damage developing during an impact test, i.e. matrix cracking, fiber failure, interface delamination and permanent indentation, are simulated. The bibliography shows a general lack of detailed validation of impact modeling and the originality of this work is to use refined and complementary experimental data to build and validate a numerical model. The good correlation between the model and this refined experimental database gave us relative confidence in the model, despite a few non-standard material parameters.

Permanent indentation was particularly focused and studied. Then we propose an original scenario to create permanent indentation, with a debris blocking phenomenon in the matrix cracks, as well as the corresponding model. The fiber failure model was set up using an original formulation between the integration points of the volume element in order to dissipate a constant energy release rate per unit area. Finally the model was used to evaluate the distribution of the dissipated energy among the different damage types, and demonstrated an interesting distribution between fiber failure and delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrate S (1998) Impact on composite structures. Cambridge University Press, Cambridge

    Google Scholar 

  2. Petit S, Bouvet C, Bergerot A, Barrau JJ (2007) Impact and compression after impact experimental study of a composite laminate with a cork thermal shield. Compos Sci Technol 67:3286–3299

    Article  Google Scholar 

  3. Zheng D, Binienda WK (2007) Effect of permanent indentation on the delamination threshold for small mass impact on plates. Int J Sol Struct 44(25–26):8143–8158

    Article  MATH  Google Scholar 

  4. Eve O (1999) Etude du comportement des structures composites endommagées par un impact basse vitesse. Thèse de doctorat, Université de Metz

    Google Scholar 

  5. Allix O, Blanchard L (2006) Mesomodeling of delamination: towards industrial applications. Compos Sci Technol 66:731–744

    Article  Google Scholar 

  6. Choi HY, Chang K (1992) A model for predicting damage in graphite/expoxy laminated composites resulting from low-velocity point impact. J Comp Mat 26(14):2134–2169

    Article  Google Scholar 

  7. De Moura MF, Gonçalves SF (2004) Modelling the interaction between matrix cracking and delamination in carbon-epoxy laminates under low velocity impact. Compos Sci Technol 64:1021–1027

    Article  Google Scholar 

  8. Guinard S, Allix O, Guédra-Degeorges D, Vinet A (2002) A 3D damage analysis of low-velocity impacts on laminated composites. Compos Sci Technol 62:585–589

    Article  Google Scholar 

  9. Mulle M, Zitoune R, Collombet F, Robert L, Grunevald YH (2009) Embedded FBGs and 3-D DIC for the stress analysis of a structural specimen subjected to bending. Compos Struct 91:48–55

    Article  Google Scholar 

  10. Rouchon J (1995) The fatigue and damage tolerance aspects for composite aircraft structures. Proceedings of ICAF symposium, Delft, The Netherlands

    Google Scholar 

  11. Alderliesten RC (2008) Damage tolerance of bonded aircraft structures. Int J Fati 31(6):1024–1030

    Article  Google Scholar 

  12. Tropis A, Thomas M, Bounie JL, Lafon P (1994) Certification of the composite outer wing of the ATR72. J Aero Eng 209:327–339

    Google Scholar 

  13. Chang FK, Chang K (1987) A progressive damage model for laminate composites containing stress concentrations. J Comp Mat 834–855

    Google Scholar 

  14. Aymerich F (2008) Priolo, “Characterization of fracture modes in stiched and unstiched cross-ply laminates subjected to low-velocity impact and compression after impact loading”. Int J Imp Eng 35:591–608

    Article  Google Scholar 

  15. Renault M (1994) Compression après impact d’une plaque stratifiée carbone époxyde – Etude expérimentale et modélisation éléments finis associée. Rapport interne EADS CCR

    Google Scholar 

  16. Lopes CS, Camanho PP, Gürdal Z, Maimí P, González EV (2009) Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Compos Sci Technol 69(7–8):937–947

    Article  Google Scholar 

  17. Faggiani A, Falzon BG (2010) Predicting low-velocity impact damage on a stiffened composite panel. Compos Part A 41(6):737–749

    Article  Google Scholar 

  18. Geubelle PH, Jeffrey S (1998) Baylor Impact-induced delamination of composites: a 2D simulation. Compos Part B Eng 29(5):589–602

    Article  Google Scholar 

  19. Aymerich F, Dore F, Priolo P (2009) Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements. Compos Sci Technol 69:1699–1709

    Article  Google Scholar 

  20. Wisnom MR (2010) “Modelling discrete failures in composites with interface elements” Comp. Compos Part A Appl Sci Manufac 41(7):795–805

    Article  Google Scholar 

  21. Davies GAO, Olsson R (2004) Impact on composite structures. Aero J 108:541–563

    Google Scholar 

  22. Aoki Y, Suemasu H, Ishikawa T (2007) Damage propagation in CFRP laminates subjected to low velocity impact and static indentation. Adv Mater 16(1):45–61

    Article  Google Scholar 

  23. Borg R, Nilsson L, Simonsson K (2004) Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model. Compos Sci Technol 64:279–288

    Article  Google Scholar 

  24. Ladeveze P, Lubineau G, Marsal D (2006) Towards a bridge between the micro- and mesomechanics of delamination for laminated composites. Compos Sci Technol 66:698–712

    Article  Google Scholar 

  25. Zhang Y, Zhu P, Lai X (2006) Finite element analysis of low-velocity impact damage in composite laminated plates. Mater Des 27:513–519

    Article  Google Scholar 

  26. Lammerant L, Verpoest I (1996) Modelling of the interaction between matrix cracks and delaminations during impact of composite plates. Compos Sci Technol 56:1171–1178

    Article  Google Scholar 

  27. Tita V, Carvalho J, Vandepitte D (2008) Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches. Compos Struct 83:413–428

    Article  Google Scholar 

  28. Johnson HE, Louca LA, Mouring S, Fallah AS (2009) Modelling impact damage in marine composite panels. Int J Imp Eng 36:25–39

    Article  Google Scholar 

  29. Iannucci L, Willows ML (2006) An energy based damage mechanics approach to modelling impact onto woven composite materials – part I: numerical models. Compos Part A 37:2041–2056

    Article  Google Scholar 

  30. Iannucci L, Willows ML (2007) An energy based damage mechanics approach to modelling impact onto woven composite materials – part II: experimental and numerical results. Compos Part A 38:540–554

    Article  Google Scholar 

  31. Bouvet C, Castanié B, Bizeul M, Barrau JJ (2009) Low velocity impact modeling in laminate composite panels with discrete interface elements. Int J Sol Struct 46(14–15):2809–2821

    Article  MATH  Google Scholar 

  32. Ha-Minh C, Kanit T, Boussu F, Abdellatif I (2011) Numerical multi-scale modeling for textile woven fabric against ballistic impact. Compos Mater Sci 50(7):2172–2184

    Article  Google Scholar 

  33. Mi Y, Crisfield MA, Davies GAO (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272

    Article  Google Scholar 

  34. Prombut P (2007) Caractérisation de la propagation de délaminage des stratifiés composites multidirectionnels. Thèse de doctorat, université de Toulouse

    Google Scholar 

  35. Prombut P, Michel L, Lachaud F, Barrau JJ (2006) Delamination of multidirectional composte laminates at 0°/theta° ply interfaces. Eng Fract Mech 7:2427–2442

    Article  Google Scholar 

  36. Raimondo L, Iannucci L, Robinson P, Curtis PT (2012) A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage. Comp Sci Technol 72:624–632

    Article  Google Scholar 

  37. Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 7:448–464

    Article  Google Scholar 

  38. Hashin Z (1980) Failure criteria for uni-directional fibre composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  39. Pinho ST, Robinson P, Iannucci L (2006) Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos Sci Technol 66:2069–2079

    Article  Google Scholar 

  40. Bazant ZP, Oh BH (1983) Progressive Carck and band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  41. Lapczyk I, Hurtado JA (2007) Progressive damage modelling in fiber-reinforced materials. Compos Part A 38:2333–2341

    Article  Google Scholar 

  42. Shi Y, Swait T, Soutis C (2012) Modelling damage evolution in composite laminates subjected to low velocity impact. Comp Struct 94(9):2902–2913

    Google Scholar 

  43. Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107–137

    Article  MATH  Google Scholar 

  44. Pinho ST (2005) Modelling failure of laminated composites using physically-based failure models. PhD of the University of London

    Google Scholar 

  45. Guocai W, Jenn-Ming Y, Hahn HT (2007) The impact properties and damage tolerance of bi-directionally reinforced fiber metal laminates. J Mater Sci 42:948–957

    Article  Google Scholar 

  46. Wardle BL, Lagace PA (1997) On the use of quasi-static testing to assess impact damage resistance of composite shell structures. J Reinf Plast Compos 16:1093–1110

    Google Scholar 

  47. Chen P, Shen Z, Xiong J, Yang S, Fu S, Ye L (2006) Failure mechanisms of laminated composites subjected to static indentation. Compos Struct 75:489–495

    Article  Google Scholar 

  48. Nettles AT, Douglas MJ (2002) A comparison of quasi-static indentation testing to low velocity impact testing. ASTM, Composite Materials: testing, design and acceptance criteria 1416:116–130

    Google Scholar 

  49. Chang DC, Khetan RP (1997) Surface damage of steel, aluminium and chopped-fiber composite panels due to projectile impact. J Reinf Plast Compos 3:193–203

    Article  Google Scholar 

  50. Caprino G, Langella A, Lopresto A (2003) Indentation and penetration of carbon fibre reinforced plastic laminates. Compos Part B 34:319–325

    Article  Google Scholar 

  51. Fiedler B, Hojo M, Ochiai S, Schulte K, Ando M (2001) Failure behavior of an epoxy matrix under different kinds of static loading. Compos Sci Technol 61:1615–1624

    Article  Google Scholar 

  52. Abi Abdallah, Bouvet C, Rivallant S, Broll B, Barrau JJ (2009) Experimental analysis of damage creation and permanent indentation on highly oriented plates. Compos Sci Technol 69(7–8):1238–1245

    Google Scholar 

  53. HexPly M21 product data, Hexcel company, http://www.hexcel.com/Resources/DataSheets/Prepreg-Data-Sheets/M21_global.pdf

  54. Olsson R (2010) Analytical model for delamination growth during small mass impact on plates. Int J Sol Struct 47:2882–2892

    Article  Google Scholar 

  55. Ilyas M, Espinosa C, Lachaud F, Salaün M (2011) Modelling aeronautical composite laminates behaviour under impact using a saturation damage and delamination continuous material model. Key Eng Mater 452–3:369–372

    Google Scholar 

  56. Curtis J, Hinton MJ, Li S, Reid SR, Soden PD (2000) Damage, deformation and residual burst strength of filament-wound composite tubes subjected to impact or quasi-static indentation. Comp Part B 31:419–433

    Google Scholar 

  57. Belingardi G, Vadori R (2003) Influence of the laminate thickness in low velocity impact behavior of composite material plate. Compos Struct 61:27–38

    Article  Google Scholar 

  58. Sjoblom PO, Hartnes TJ, Cordell TM (1988) On low velocity impact testing of composite materials. J Compos Mater 22:30–52

    Article  Google Scholar 

  59. Adam L, Bouvet C, Castanié B, Daidié A, Bonhomme E (2012) Discrete ply model of circular pull-through test of fasteners in laminates. Comp Struct 94(10):3082–3091

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Bouvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bouvet, C., Hongkarnjanakul, N., Rivallant, S., Barrau, JJ. (2013). Discrete Impact Modeling of Inter- and Intra-laminar Failure in Composites. In: Abrate, S., Castanié, B., Rajapakse, Y. (eds) Dynamic Failure of Composite and Sandwich Structures. Solid Mechanics and Its Applications, vol 192. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5329-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5329-7_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5328-0

  • Online ISBN: 978-94-007-5329-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics