Skip to main content

Large Eddy Simulation of Dispersed Two-Phase Flows and Premixed Combustion in IC-Engines

  • Chapter
  • First Online:
  • 4570 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

Abstract

An accurate prediction of particle dispersion is an essential issue for reactive two-phase flows as they occur in IC-engines. It is also a challenging application for Large Eddy Simulation (LES) based Eulerian–Lagrangian methods. The main objective of this work is to assess the state-of-the-art model capabilities of the LES based Eulerian–Lagrangian method as implemented into the commercial CFD code, FLUENT/ANSYS. This is achieved by carrying out various parameter studies that may enable a deeper understanding of the interactions between the numerics and modeling involved, and thus an increasing of the predictive ability and the reliability of transfer of findings from one configuration to others. In this report, special attention is paid to the prediction of the particle preferential accumulation, because of its importance for simulations of mixing and combustion in turbulent reacting two-phase flows. The combustion itself is not considered. The conclusions are based on a systematic variation of relevant flow parameters, such as the Reynolds number and the particle Stokes number, so that a wide range of applications is covered. Therefore, several particle–laden flow configurations, such as two plane channel flows, a free jet and an evaporating spray at low temperature, have been investigated. The results presented in this report are especially for the two plane channel flows characterized by low and high Reynolds numbers, respectively. It was observed that the maximum preferential accumulation occurs at a constant Stokes number and that this number does not depend on the Reynolds number. The magnitude of the accumulation, however, depends on the Reynolds number of the flow. The effect of a sub-grid dispersion model on the particle accumulation was found to be less pronounced for particles with characteristic time scales in the order of the Kolmogorov scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. AGARD: A selection of test cases for the validation of large-Eddy simulations of turbulent flows. Agard Advisory Report 345, Neuilly-Sur-Seine, France (1998)

    Google Scholar 

  2. ANSYS Fluent 12.0 Documentation. ANSYS Inc. (2009)

    Google Scholar 

  3. Apte, S.V., Mahesh, K., Moin, P., Oefelein, J.C.: Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Int. J. Multiphase Flow 29, 1311–1331 (2003)

    Article  MATH  Google Scholar 

  4. Apte, S.V., Mahesh, K., Moin, P.: Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32, 2247–2256 (2009)

    Article  Google Scholar 

  5. Armenio, V., Piomelli, U., Fiorotto, V.: Effect of the subgrid scales on particle motion. Phys. Fluids 11, 3030–3042 (1999)

    Article  MATH  Google Scholar 

  6. Armsfield, S., Street, R.: The fractional step method for the Navier–Stokes equations on staggered grids: accuracy of three variations. J. Comput. Phys. 153, 660–665 (1999)

    Article  Google Scholar 

  7. Axerio, J., Iaccarino, G.: Flow asymmetry and vortical structures behind a rotating tire. Bull. Am. Phys. Soc. 54(2009)

    Google Scholar 

  8. Barth, T.J., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366, AIAA 27th Aerospace Science Meeting, Reno, Nevada (1989)

    Google Scholar 

  9. Benson, M.J., Eaton, J.K.: The effects of wall roughness on the particle velocity field in fully developed channel flow. Report No. TSD-150. Thermosciences Division, Stanford University (2003)

    Google Scholar 

  10. Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L.Y.M., Poinsot, T.J., Cazalens, M.: Investigation of two-fluid method for large eddy simulation of spray combustion in gas turbines. Flow Turb. Combust. 80, 291–321 (2008)

    Article  Google Scholar 

  11. Burton, T.M., Eaton, J.K.: Fully resolved simulations of particle-turbulence interaction. J. Fluid Mech. 545, 67–111 (2005)

    Article  MATH  Google Scholar 

  12. Caraman, N., Boree, J., Simonin, O.: Effect of collisions on the dispersed phase fluctuations in a dilute tube flow: experimental and theoretical analysis. Phys. Fluids 15, 3602–3612 (2003)

    Article  Google Scholar 

  13. Celik, I., Klein, M., Freitag, M., Janicka, J.: Assessment measures for urans/des/les: an overview with applications. J. Turbul. 7(48), 48 (2006)

    Article  MathSciNet  Google Scholar 

  14. Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012)

    Article  Google Scholar 

  15. Clamen, A., Gauvin, W.H.: Effects of turbulence on the drag coefficients of spheres in a supercritical flow regime. AIChE J. 15, 184 (1961)

    Article  Google Scholar 

  16. Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton (1998)

    Google Scholar 

  17. Crowe, T.: Modeling turbulence in multiphase flows. Eng. Turbul. Model. Exp. 2, 899–913 (1993)

    Google Scholar 

  18. Daubert, T.E., Danner, R.D.: Data compilation tables of properties of pure compounds. Technical report, Design Institute for Physical Property Data. AIChE, New York (1987)

    Google Scholar 

  19. Dennis, S.C.R., Singh, S.N., Ingham, D.B.: The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech. 101, 257–279 (1980)

    Article  MATH  Google Scholar 

  20. Deutsch, E., Simonin, O.: Large eddy simulation applied to the motion of particles in stationary homogeneous fluid turbulence. In: Turbulence Modification in Multiphase Flows, vol. 110, pp. 35–42. ASME, Portland (1991)

    Google Scholar 

  21. Dimitrova, D.: On the reliability of large-eddy simulation for dispersed two-phase flows. PhD thesis, TU-Darmstadt, Germany (2010)

    Google Scholar 

  22. Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Springer, New York (1999)

    Google Scholar 

  23. Elghobashi, S., Truesdell, G.C.: Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700 (1992)

    Article  Google Scholar 

  24. Faeth, G.M.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9, 1–76 (1998)

    Article  Google Scholar 

  25. Fede, P., Simonin, O.: Numerical study of the subgrid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103 (2006)

    Article  Google Scholar 

  26. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Mechanics, 3rd edn. Springer, Berlin/New York (2002)

    Google Scholar 

  27. Fessler, J.R., Eaton, J.K.: Turbulence modification by particles in a backward-facing step flow. J. Fluid Mech. 394, 97–117 (1999)

    Article  MATH  Google Scholar 

  28. Fessler, J.R., Kulick, J.D., Eaton, J.K.: Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 3742–3749 (1994)

    Article  Google Scholar 

  29. Fevrier, P., Simonin, O., Squires, K.D.: Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 1–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vittoria, M.S., Geurts, B.J., Meyers, J., Sagaut, P.: Quality and reliability of large-eddy simulations. ERCOFTAC Series; vol. 16, ISBN/EAN: 978-94-007-0230-1, Springer (2010)

    Google Scholar 

  31. Fröhlich, J.: Large Eddy Simulation Turbulenter Strömungen. B. G. Teubner Verlag, Wiesbaden (2006)

    Google Scholar 

  32. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: Dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  33. Goryntsev, D., Sadiki, A., Klein, M., Janicka, J.: Analysis of cycle variation of liquid fuel-air mixing processes in a realistic DISI IC-engine using large eddy simulation. Int. J. Heat Fluid Flow 31, 845–849 (2010)

    Article  Google Scholar 

  34. Hahn, F., Olbricht, C., Janicka, J.: Large eddy simulation of an evaporating spray based on an Eulerian–Lagrangian approach. In: Proceedings of ILASS, Como Lake, Italy, pp. ILASS08-2-9, 8–10 Sept 2008

    Google Scholar 

  35. Hardalupas, Y., Taylor, A.M.K.P., Whitelaw, J.H.: Velocity and particle flux characteristics of turbulent particle-laden jets. Proc. R. Soc. Lond. A 426, 31–78 (1989)

    Article  Google Scholar 

  36. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)

    Google Scholar 

  37. Hjelmfelt Jr., T., Mockros, L.F.: Motion of discrete particles in a turbulent fluid. Appl. Sci. Res. 16, 149–161 (1966)

    Article  Google Scholar 

  38. Holmes, D.G., Conell, S.D.: Solution of the 2d Navier–Stokes equations on unstructured adaptive grids. In: AIAA 9th Computational Fluid Dynamics Conference, Buffalo (1989)

    Google Scholar 

  39. James, S., Zhu, J., Anand, M.S.: Large eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44, 674–686 (2006)

    Article  Google Scholar 

  40. Janicka, J., Sadiki, A.: Large eddy simulation for turbulent combustion systems. Proc. Combust. Inst. 30, 573–574 (2005)

    Article  Google Scholar 

  41. Kim, S.-E., Makarov, B.: In: 17th AIAA Computational Fluid Dynamics Conference, Toronto Ontario, AIAA Paper 2005–5253, 6–9 June 2005

    Google Scholar 

  42. Kolmogorov, N.: Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 299–303 (1941)

    Google Scholar 

  43. Kuerten, H., Vreman, A.W.: Can turbophoresis be predicted by large-eddy simulation? Phys. Fluids 17, 011701 (2005)

    Article  Google Scholar 

  44. Kuerten, J.G.M.: Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108 (2006)

    Article  Google Scholar 

  45. Kulick, J.D., Fessler, J.R., Eaton, J.K.: On the interactions between particles and turbulence in a fully-developed channel flow in air. Mechanical Engineering Report MD-66, Stanford University (1993)

    Google Scholar 

  46. Kulick, J.D., Fessler, J.R., Eaton, J.K.: Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109–134 (1994)

    Article  Google Scholar 

  47. Lam, K., Banerjee, S.: On the condition of streak formation in bounded flows. Phys. Fluids A 4, 306–320 (1992)

    Article  MATH  Google Scholar 

  48. Leonard, B.P.: The ultimate conservative difference scheme applied to unsteady one dimensional advection. Comput. Methods Appl. Mech. Eng. 88, 17–74 (1991)

    Article  MATH  Google Scholar 

  49. Lilly, D.K.: A proposed modification of the germano subgrid-scale closure model. Phys. Fluids 4, 633–635 (1992)

    Article  Google Scholar 

  50. Longmire, E.K., Eaton, J.K.: Structure of a particle-laden round jet. J. Fluid Mech. 236, 217–257 (1992)

    Article  Google Scholar 

  51. Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)

    Article  MATH  Google Scholar 

  52. Marchioli, C., Soldati, A.: Dns of particle-laden turbulent channel flow. In: Proceedings of 11th Workshop on Two-Phase Flow Predictions, Merseburg, Germany (2005)

    Google Scholar 

  53. Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F., Portela, L.M.: Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Int. J. Multiphase Flow 34, 879–893 (2008)

    Article  Google Scholar 

  54. Masoudi, M., Sirignano, W.A.: Nonlinear capillary waves on swirling, axisymmetric free liquid films. Int. J. Multiphase Flow 27, 1707–1734 (2001)

    Article  Google Scholar 

  55. Mathey, F., Cokljat, D.: Assessment of the vortex method for large-eddy simulation inlet conditions. Prog. Comput. Fluid Dyn. 6, 58–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mathur, S.R., Murthy, J.Y.: A pressure-based method for unstructured meshes. Num. Heat Trans. 31, 195–215 (1997)

    Article  Google Scholar 

  57. Mei, R.: An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int. J. Multiphase Flow 18, 145–147 (1992)

    Article  MATH  Google Scholar 

  58. Meyers, J., Geurts, B., Sagaut, P.: Quality Reliability of Large Eddy Simulations. Ercoftac Series, vol. 13. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  59. Moin, P., Apte, S.V.: Large eddy simulation of realistic gas turbine combustor. AIAA J. 44, 698–708 (2006)

    Article  Google Scholar 

  60. Morsi, S.A., Alexander, A.J.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972)

    Article  MATH  Google Scholar 

  61. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to re_ = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  62. Odar, F., Hamilton, W.S.: Forces on a sphere accelerating in a viscous fluid. J. Fluid Mech. 18, 302–314 (1964)

    Article  MATH  Google Scholar 

  63. Oefelein, J.C.: Simulation and analysis of turbulent multiphase combustion at high pressures. PhD thesis, The Pennsylvania State University (1997)

    Google Scholar 

  64. Olbricht, C.: Numerische Verbrennung technischer Verbrennungssysteme. PhD thesis, TU Darmstadt (2009)

    Google Scholar 

  65. Paris, D.: Turbulence attenuation in a particle-laden channel flow. PhD thesis, Stanford University (2001)

    Google Scholar 

  66. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC (1980)

    MATH  Google Scholar 

  67. Picciotto, M., Marchioli, C., Reeks, M.W., Soldati, A.: Statistics of velocity and preferential accumulation of micro-particles in boundary layer turbulence. Nucl. Eng. Des. 235, 1239–1249 (2005)

    Article  Google Scholar 

  68. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  69. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  70. Pozorski, J., Apte, S.V.: Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid–dispersion. Int. J. Multiphase Flow 35, 118–128 (2009)

    Article  Google Scholar 

  71. Prandtl, L.: über die ausgeprägte turbulenz. Z. Angew. Math. Mech. 5, 136–139 (1925)

    MATH  Google Scholar 

  72. Qiu, H.-H., Sommerfeld, M.: A reliable method for determinig the measurement volume size and particle mass fluxes using phase-Doppler anemometry. Exp. Fluids 13, 393–404 (1992)

    Article  Google Scholar 

  73. Ranz, W.E., Marshall Jr., W.R.: Evaporation from drops, part i. Chem. Eng. Prog. 48(3), 141–146 (1952)

    Google Scholar 

  74. Ranz, W.E., Marshall Jr., W.R.: Evaporation from drops, part ii. Chem. Eng. Prog. 48(4), 173–180 (1952)

    Google Scholar 

  75. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow part an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  76. Riber, E., Moureau, V., Garcia, M., Poinsot, T., Simonin, O.: Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows. J. Comput. Phys.. doi:10.1016/j.jcp.2008.10.001, 2008

  77. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  78. Rubinow, S.I., Keller, J.B.: The transverse force on spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447–459 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  79. Rudoff, R.R., Bachalo, W.D.: Measurements of droplet drag coefficients in polydispersed turbulent flow field. AIAA, pp. 80–0235 (1988)

    Google Scholar 

  80. Ruetsch, G.R., Maxey, M.R.: The evolution of small–scale structures in homogeneous turbulence. Phys. Fluids A 4, 2747 (1992)

    Article  Google Scholar 

  81. Rutland, C.J.: Large eddy simulation for internal combustion engine: a review. Int. J. Eng. Resour. 12(5), 421–445 (2011)

    Article  Google Scholar 

  82. Saffman, G.G.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400 (1965)

    Article  MATH  Google Scholar 

  83. Sagaut, P.: Large Eddy Simulation of Incompressible Flows. Springer, Berlin/New York (2001)

    Book  Google Scholar 

  84. Sawatzki, O.: Strömungsfeld um eine rotierende kugel. Acta Mech. 9, 159–214 (1970)

    Article  MATH  Google Scholar 

  85. Schiller, L., Naumann, Z.: A drag coefficient correlation. VDI Zeitschrift 77, 318 (1935)

    Google Scholar 

  86. Schlichting, H., Gersten, K.: Grenzschicht-Theorie, 9th edn. Springer, Berlin/Heidelberg (1997)

    MATH  Google Scholar 

  87. Schuman, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  Google Scholar 

  88. Segura, J.C.: Predictive capabilities of particle-laden large eddy simulation. PhD thesis, Department of Mechanical Engineering, Stanford University (2004)

    Google Scholar 

  89. Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Applied Mathematical Sciences 135. Cambridge University Press, New York (2005)

    Google Scholar 

  90. Smagorinsky, J.: General circulation experiments with the primitive equations. i. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  91. Snyder, W.H., Lumley, J.L.: Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech. 48, 41–71 (1971)

    Article  Google Scholar 

  92. Sommerfeld, M.: Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens (1998)

    Google Scholar 

  93. Sommerfeld, M.: Theoretical and experimental modelling of particulate flows. Technical Report Lecture Series 2000–06, von Karman Institute for Fluid Dynamics (2000)

    Google Scholar 

  94. Sommerfeld, M., Qiu, H.H.: Particle concentration measurements by phase-Doppler anemometry in complex dispersed two-phase flows. Exp. Fluids 18, 187–198 (1995)

    Article  Google Scholar 

  95. Sommerfeld, M., Qiu, H.H.: Spray evaporation in turbulent flow URL http://www-mvt.iw.uni-halle.de/index.php?spray_evaporation. Data base (1998)

  96. Sommerfeld, M., Qiu, H.H.: Experimental studies of spray evaporation in turbulent flow. Int. J. Heat Fluid Flow 19, 10–22 (1998)

    Article  Google Scholar 

  97. Squires, K.D., Eaton, J.K.: Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169–1178 (1991)

    Article  Google Scholar 

  98. Stokes, G.G.: On the effect of the inertial friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8–106 (1851)

    Google Scholar 

  99. Tang, L., Wen, F., Yang, Y., Crowe, C.T., Chung, J.N., Troutt, T.R.: Self-organizing particle dispersion mechanism in a plane wake. Phys. Fluids A 4, 2244–2251 (1992)

    Article  Google Scholar 

  100. Torobin, L.B., Gauvin, W.H.: The drag coefficient of single sphere moving in steady and accelerated motion in a turbulent fluid. AIChE J. 7, 615–619 (1961)

    Article  Google Scholar 

  101. Truesdell, C., Toupin, R.: The Classical Field Theories, volume III of Handbuch der Physik, chapter 1 Part. Springer, Berlin (1960)

    Google Scholar 

  102. Uhlherr, P.H.T., Sinclair, C.G.: The effect of free stream turbulence on the drag coefficient of spheres. In: Proceedings of Chemca ’70, 1:1 (1970)

    Google Scholar 

  103. URL http://www.eacc.fluent.com/papers.html(2007)

  104. Vance, M., Squires, K.W., Simonin, O.: Properties of the particle velocity field in gas-solid turbulent channel flow. Phys. Fluids 18, 063302 (2006)

    Article  Google Scholar 

  105. Vargaftik, N.B.: Handbook of Physical Properties of Liquids and Gases, 2nd edn. Taylor & Francis Inc, Washington, DC (1983)

    Google Scholar 

  106. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (Hrsg.): VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang. Springer, Berlin (2002)

    Google Scholar 

  107. Vreman, W.: Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235–279 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  108. Vreman, A.W., Geurts, B.J., Deen, N.G., Kuipers, J.A.M.: Large-eddy simulation of a particle-laden turbulent channel flow. In: Friedrich, R., et al. (eds.) Direct and Large-Eddy Simulation, vol. 5, pp. 271–278, Kluwer Academic Publishers (2004)

    Google Scholar 

  109. Wang, L.P., Maxey, M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68 (1993)

    Article  Google Scholar 

  110. Wang, Q., Squires, K.D.: Large-eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8, 1207–1223 (1996)

    Article  MATH  Google Scholar 

  111. Wilcox, D.C.: Turbulence Modeling for CFD. D C W Industries (2000)

    Google Scholar 

  112. Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y.: Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001)

    Article  MATH  Google Scholar 

  113. Young, J., Leeming, A.: A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129–159 (1997)

    Article  MATH  Google Scholar 

  114. Zarin, N.A., Nicholls, J.A.: Sphere drag in solid rockets – non continuum and turbulence effects. Combust. Sci. Technol. 3, 273 (1971)

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the financial support by the German Research Council (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dimitrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dimitrova, D., Braun, M., Janicka, J., Sadiki, A. (2013). Large Eddy Simulation of Dispersed Two-Phase Flows and Premixed Combustion in IC-Engines. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics