Skip to main content

Adaptive Large Eddy Simulation and Reduced-Order Modeling

  • Chapter
  • First Online:
Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

  • 4546 Accesses

Abstract

The quality of large eddy simulations can be substantially improved through optimizing the positions of the grid points. LES-specific spatial coordinates are computed using a dynamic mesh moving PDE defined by means of physically motivated design criteria such as equidistributed resolution of turbulent kinetic energy and shear stresses. This moving mesh approach is applied to a three-dimensional flow over periodic hills at Re=10,595 and the numerical results are compared to a highly resolved LES reference solution. Further, the applicability of reduced-order techniques to the context of large eddy simulations is explored. A Galerkin projection of the incompressible Navier–Stokes equations with Smagorinsky sub-grid filtering on a set of reduced basis functions is used to obtain a reduced-order model that contains the dynamics of the LES. As an alternative method, a reduced-order model of the un-filtered equations is calibrated to a set of LES solutions. Both approaches are tested with POD and CVT modes as underlying reduced basis functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Project-Related Publications

  1. Löbig, S., Dörnbrack, A., Fröhlich, J., Hertel, C., Kühnlein, C., Lang, J.: Towards large eddy simulation on moving grids. Proc. Appl. Math. Mech. 9, 445–446 (2009)

    Article  Google Scholar 

  2. Hertel, C., Schümichen, M., Löbig, S., Fröhlich, J., Lang, J.: Adaptive large eddy simulation with moving grids. Preprint Technische Universität Dresden, accepted for publication in Theoretical and Computational Fluid Dynamics (2012)

    Google Scholar 

  3. Lang, J., Cao, W., Huang, W., Russell, R.D.: A two-dimensional moving finite element method with local refinement based on a posteriori error estimates. Appl. Numer. Math. 46, 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ullmann, S., Lang, J.: A POD-Galerkin reduced model with updated coefficients for Smagorinsky LES. In: Pereira, J.C.F., Sequeira, A., Pereira, J.M.C. (eds) Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal (2010)

    Google Scholar 

  5. Erdmann, B., Lang, J., Roitzsch, R.: Kardos user’s guide. ZIB-Report 02–42, ZIB (2002)

    Google Scholar 

  6. Lang, J.: Adaptive incompressible flow computations with linearly implicit time discretization and stabilized finite elements. In: Papailiou, K., Tsahalis, D., Periaux, J., Hirsch, C., Pandolfi, M. (eds.) Computational Fluid Dynamics ’98. Chichester, New York (1998)

    Google Scholar 

  7. Lang, J., Verwer, J.: ROS3P—an accurate third-order Rosenbrock solver designed for parabolic problems. BIT Numer. Math. 41, 730–737 (2001)

    Article  MathSciNet  Google Scholar 

Other Publications

  1. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods, 1st edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Hertel, C., Fröhlich, J.: Error reduction in LES via adaptive moving grids, QLES II, Pisa, Italien. In: M.-V. Salvetti et al. (Hsg.) Proceedings: Quality and Reliability of Large-Eddy Simulations II, Springer, 9–11 September 2009

    Google Scholar 

  3. Holmes, P., Lumley, J., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  4. Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I, II and III. Q. Appl. Math. 45, 561–571 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Rempfer, D.: On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14(2), 75–88 (2000)

    Article  MATH  Google Scholar 

  6. Bergmann, M., Bruneau, C., Iollo, A.: Enablers for robust POD models. J. Comput. Phys. 228(2), 516–538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Telib, H., Manhart, M., Iollo, A.: Analysis and low-order modeling of the inhomogeneous transitional flow inside a T-mixer. Phys. Fluids 16, 2717–2731 (2004)

    Article  Google Scholar 

  8. Buffoni, M., Camarri, S., Iollo, A., Salvetti, M.: Low-dimensional modelling of a confined three-dimensional wake flow. J. Fluid Mech. 569, 141–150 (2006)

    Article  MATH  Google Scholar 

  9. Couplet, M., Basdevant, C., Sagaut, P.: Calibrated reduced-order POD-Galerkin system for fluid flow modeling. J. Comput. Phys. 207, 192–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition. J. Comput. Phys. 230, 126–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burkardt, J., Gunzburger, M., Lee, H.C.: POD and CVT-based reduced-order modeling of Navier–Stokes flows. Comput. Methods Appl. Mech. Eng. 196(1–3), 337–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Smagorinsky, J.: General circulation experiments with the primitive equations, I, The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  14. Winslow, A.M.: Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh. J. Comput. Phys. 2, 149–172 (1967)

    MathSciNet  Google Scholar 

  15. van Dam, A.: Go with the flow. In: Ph.D. Thesis, Utrecht University (2009)

    Google Scholar 

  16. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  17. Demirdzic, I., Peric, M.: Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Methods Fluids 8, 1037–1050 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stone, H.L.: Iterative solution of implicit approximation of multidimensional partial differential equations. SIAM J. Numer. Anal. 5, 530–558 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fröhlich, J., Mellen, C.P., Rodi, W., Temmermann, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berselli, L., Iliescu, T., Layton, M.: Mathematics of Large Eddy Simulation of Turbulent Flows, 1st edn. Springer, Heidelberg/Berlin (2006)

    MATH  Google Scholar 

  21. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rempfer, D.: Investigations of boundary layer transition via Galerkin projection on empirical eigenfunctions. Phys. Fluids 8(1), 175–188 (1996)

    Article  MATH  Google Scholar 

  23. Noack, B., Papas, P., Monkewitz, P.A.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gresho, P.M., Sani, R.L.: Incompressible Flow and the Finite Element Method. Wiley, New York (2000)

    MATH  Google Scholar 

  25. Gunzburger, M.: Perspectives in Flow Control and Optimization. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the German Research Council (DFG) through the SFB568. We would also like to thank Jochen Fröhlich and Claudia Hertel (TU Dresden) for making the turbulent flow solver LESOCC2 available to us and for their kind programming support during our numerical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ullmann, S., Löbig, S., Lang, J. (2013). Adaptive Large Eddy Simulation and Reduced-Order Modeling. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics