Skip to main content

Primary Atomization in an Airblast Gas Turbine Atomizer

  • Chapter
  • First Online:
Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

Abstract

This study focuses on the spray atomization, transport and impact on a solid substrate under cross-flow conditions, as used in airblast atomizers with prefilmers for aero engines and gas turbines. The phenomena are observed using a high-speed video system and the spray is characterized using the phase Doppler technique. The governing mechanisms of drop formation, wall collision and aerodynamic breakup are identified. It is shown that three different mechanisms are mainly responsible for the formation of single drops from the bulk liquid. These are: primary atomization, breakup of the liquid wall film and further aerodynamic breakup of droplets. Finally, an atomization model is developed, which accounts for primary atomization, wall film formation and aerodynamic breakup. The model predicts the distribution of the drop diameters and velocities in the generated spray. The agreement between the model predictions and the experimental data is very good.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Project-Related Publications

  1. Batarseh, F., Gnirß, M., Roisman, I.V., Tropea, C.: Fluctuations of a spray generated by an airblast atomizer. Exp. Fluids 46, 1081–1091 (2009)

    Article  Google Scholar 

  2. Chrigui, M., Roisman, I.V., Batarseh, F.Z., Sadiki, A., Tropea, C.: Spray generated by an airblast atomizer under elevated ambient pressures. J. Propuls. Power 26, 1170–1183 (2009)

    Article  Google Scholar 

  3. Chrigui, M., Sadiki, A., Batarseh, F., Janika, J., Tropea, C.: Numerical and experimental study of spray produced by an asirblast atomizer under elevated pressure conditions. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. June 9–13, 2008, Berlin, Germany (2008)

    Google Scholar 

  4. Roisman, I.V., Batarseh, F.Z., Tropea, C.: Chaotic disintegration of a liquid wall film: a model of an air-blast atomization. Atomiz. Sprays 20(10), 837–845 (2010)

    Article  Google Scholar 

  5. Roisman, I.V., Batarseh, F.Z., Tropea, C.: Characterization of a spray generated by an airblast atomizer with prefilmer. Atomiz. Sprays 20(10), 887–903 (2010)

    Article  Google Scholar 

  6. Opfer, L., Roisman, I.V., Tropea, C.: High speed visualization of drop and spray impact on rigid walls with cross-flow, poster. In: International Conference on Multiphase Flows, Tampa, USA (2010)

    Google Scholar 

  7. Opfer, L., Roisman, I.V., Tropea C.: Spray impact on walls with cross-flow, poster. Workshop on Near Wall Reactive Flows, Seeheim, Germany (2010)

    Google Scholar 

  8. Opfer, L., Roisman, I.V., Tropea, C.: Spray Impact on Walls with Cross-flow: Experiments and Modeling. ILASS Europe, Estoril (2011)

    Google Scholar 

  9. Opfer, L., Roisman, I.V., Tropea, C.: Laboratory simulations of an airblast atomization: main mechanisms of liquid disintegration and spray characteristics, Exp. Fluids, submitted, March 2012.

    Google Scholar 

Other Publications

  1. Lefebvre, A.: Atomization and Sprays. Hemisphere Publishing Corporation, New York (1989)

    Google Scholar 

  2. Nukiyama, S., Tanasawa, Y.: Experiments on the atomization of liquids in an airstream. Trans. Soc. Mech. Eng. Jpn. 5, 62–75 (1939)

    Google Scholar 

  3. Lorenzetto, G.E., Lefebvre, A.H.: Measurements of drop size on a plain jet airblast atomizer. AIAA J. 5, 62–75 (1939)

    Google Scholar 

  4. Jasuja, A.K.: Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions. ASME Paper 82-GT-32 (1982)

    Google Scholar 

  5. Rizk, N.K., Lefebvre, A.H.: Spray characteristics of plain-jet airblast atomizers. J. Eng. Gas Turbines Power 106(3), 634–638 (1984)

    Article  Google Scholar 

  6. Issac, K., Missoum, A., Drallmeier, J., Johnston, A.: Atomization experiments in a coaxial co-flowing mach 1.5 flow. AIAA J. 32(8), 1640–1646 (1994)

    Article  Google Scholar 

  7. Hede, P.D., Bach, P., Jensen, A.D.: Two-fluid spray atomization and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review. Chem. Eng. Sci. 63(14), 3821–3842 (2008)

    Article  Google Scholar 

  8. Lasheras, J.C., Hopfinger, E.J.: Liquid jet instability and atomization in a coaxial gas stream. Ann. Rev. Fluid Mech. 32(1), 275–308 (2000)

    Article  Google Scholar 

  9. Marmottant, P., Villermaux, E.: On spray formation. J. Fluid Mech. 32, 73–111 (2003)

    Google Scholar 

  10. Varga, C.M., Lasheras, J.C., Hopfinger, E.J.: Initial breakup of a small-diameter liquid jet by a high-speed gas stream. J. Fluid Mech. 497, 405–434 (2003)

    Article  MATH  Google Scholar 

  11. Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D.M., Berchielli, A., Connolly, E.K.: Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modelling. Int. J. Multiphase Flow 34(2), 161–175 (2008)

    Article  Google Scholar 

  12. O’Rourke P.J., Amsden A.A.: The tab method for numerical calculation of spray droplet breakup. SAE Technical Paper 872089 (1987)

    Google Scholar 

  13. Tanner, F.X.: Development and validation of a cascade atomization and drop breakup model for high-velocity dense sprays. Atomiz. Sprays 14(3), 211–242 (2004)

    Article  MathSciNet  Google Scholar 

  14. Entov, V.M., Yarin, A.L.: Dynamical equations for a liquid jet. Fluid Dyn. 15(5), 644–649 (1984)

    Article  Google Scholar 

  15. Entov, V.M., Yarin, A.L.: The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91–111 (1984)

    Article  MATH  Google Scholar 

  16. Faeth, G.M., Hsiang, L.P., Wu, P.K.: Structure and breakup properties of sprays. Int. J. Multiphase Flow 21(Supplement), 99–127 (1995)

    Article  MATH  Google Scholar 

  17. Stahl, M., Damaschke, N., Tropea C.: Experimental investigation of turbulence and cavitation inside a pressure atomizer and optical characterization of the generated spray. In: 10th ICLASS Conference, Kyoto (2006)

    Google Scholar 

  18. Dai, Z., Chou, W.H., Faeth, G.M.: Drop formation due to turbulent primary breakup at the free surface of plane wall jets. Phys. Fluids 10(5), 1147–1157 (1998)

    Article  Google Scholar 

  19. Rein, M.: Turbulent open-channel flows: drop-generation and self-aeration. J. Hydraul. Eng. 124(1), 670–675 (1999)

    Article  Google Scholar 

  20. Desjardins, O., Moureau, V., Knudsen, E., Herrmann, M., Pitsch, H.: Conservative Level Set/ghost Fluid Method for Simulating Primary Atomization. ILASS Americas, Toronto (2007)

    Google Scholar 

  21. Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman/Wiley, Harlow/New York (1993)

    MATH  Google Scholar 

  22. Villermaux, E., Marmottant, P., Duplat, J.: Ligament-mediated spray formation. Phys. Rev. Lett. 92(7), 074501 (2004)

    Article  Google Scholar 

  23. Kolmogorov, A.N.: On the log-normal distribution of particles sizes during breakup process. Dokl. Akad. Nauk. SSSR, pp. 99–101 (1941)

    Google Scholar 

  24. Gorochovski, M., Saveliev, V.: Further analyses of Kolmogorov’s model of breakup. Phys. Fluids 15, 184–192 (2003)

    Article  Google Scholar 

  25. Hsiang, L.P., Faeth, G.M.: Near-limit drop deformation and secondary breakup. Int. J. Multiphase Flow 18(5), 635–652 (1992)

    Article  MATH  Google Scholar 

  26. Guildenbecher, D.R., Lopez-Rivera, C., Sojka, P.E.: Secondary atomization. Exp. Fluids 46(3), 371–402 (2009)

    Article  Google Scholar 

  27. Schmehl R.: Modeling droplet breakup in complex two-phase flows. In: ICLASS Conference, Sorento, Italy (2003)

    Google Scholar 

  28. Hinze, J.O.: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3), 289–295 (1955)

    Article  Google Scholar 

  29. Hsiang, L.P., Faeth, G.M.: Drop deformation and breakup due to shock wave and steady disturbances. Int. J. Multiphase Flow 21(4), 545–560 (1995)

    Article  MATH  Google Scholar 

  30. Ranger, A.A., Nicholls, J.A.: The aerodynamic shattering of liquid drops. AIAA 7, 285 (1969)

    Article  Google Scholar 

  31. Liu, Z., Reitz, R.D.: An analysis of the distortion and breakup mechanisms of high speed liquid drops. Int. J. Multiphase Flow 23(4), 631–650 (1997)

    Article  MATH  Google Scholar 

  32. Snyder, H.E., Reitz, R.D.: Direct droplet production from a liquid film: a new gas-assisted atomization mechanism. J. Fluid Mech. 375, 363–81 (1998)

    Article  MATH  Google Scholar 

  33. Lee, C.H., Reitz, R.D.: An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream. Int. J. Multiphase Flow 26(2), 229–244 (2000)

    Article  MATH  Google Scholar 

  34. Hwang, S., Liu, S., Reitz, R.D.: Breakup mechanisms and drag coefficients of high speed vaporizing drops. Atomiz. Sprays 6(3), 353–376 (1996)

    Google Scholar 

  35. Wert, K.: A rationally-based correlation of mean fragment size for drop secondary breakup. Int. J. Multiphase Flow 21(6), 1063–1071 (1995)

    Article  MATH  Google Scholar 

  36. Pilch, M., Erdman, C.: Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiphase Flow 13(6), 741–757 (1987)

    Article  Google Scholar 

  37. Ng, C.L., Sankarakrishnan, R., Sallam, K.A.: Bag breakup of nonturbulent liquid jets in crossflow. Int. J. Multiphase Flow 34(3), 241–259 (2008)

    Article  Google Scholar 

  38. Damsohn, M., Prasser, H.: High-speed liquid film sensor for two-phase flows with high spatial resolution based on electrical conductance. Flow Meas. Instrum. 20(1), 1–14 (2009)

    Article  Google Scholar 

  39. Schlichting, H., Gersten, K., Krause, E., Oertel Jr., H.: Grenzschicht-Theorie, 10th edn. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  40. Villermaux, E., Bossa, B.: Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5(9), 697–702 (2009)

    Article  Google Scholar 

  41. Chandrasekhar, S.: Hydrodynamik and Hydromagnetic Stability. Dover Publications, New York (1981)

    Google Scholar 

  42. Duke, D., Honnery, D., Soria, J.: Experimental investigation of nonlinear instabilities in annular liquid sheets. J. Fluid Mech. 691, 594–604 (2012)

    Article  MATH  Google Scholar 

  43. Gepperth, S., Guildenbecher, D., Koch, R., Bauer, H.-J.: Pre-filming Primary Atomization: Experiments and Modeling. ILASS Europe, Brno (2010)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the German Research Council (DFG) through the SFB568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Opfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Opfer, L., Roisman, I.V., Tropea, C. (2013). Primary Atomization in an Airblast Gas Turbine Atomizer. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics