Advertisement

Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): a semiautonomous microcosm in the food web of Lake Tanganyika

  • Kalevi SalonenEmail author
  • Pia Högmander
  • Victor Langenberg
  • Hannu Mölsä
  • Jouko Sarvala
  • Anne Tarvainen
  • Marja Tiirola
JELLYFISH BLOOMS
  • 660 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 220)

Abstract

Medusae are important members of marine food webs, but are rare in lakes. In one of the largest lakes in the world, Lake Tanganyika, a small medusa (Limnocnida tanganyicae) is a prominent component of zooplankton. We used field and laboratory methods to study the ecological role of Lake Tanganyika medusae, which occasionally reached high local densities in the whole epilimnion. The largest individuals showed low amplitude, diel vertical migration which minimized their exposure to harmful UV radiation and also may be important for picocyanobacteria regularly present in the medusae. The endosymbiotic picocyanobacteria differed morphologically among medusae and were predominantly one Lake Biwa type Cyanobium sp. that typically was abundant in the water column. Under light, some medusae were net primary producers. Although nitrogen stable isotopic ratios indicated that the free-living cyanobacteria were nitrogen-fixers, the picocyanobacteria in medusae obtained nitrogen predominantly from their host. Stable isotopic ratios of carbon and nitrogen further suggested that copepods were the most likely prey for the medusae. Lake Tanganyika medusae apparently base their metabolism both on animal and plant sources, with possible internal cycling of nutrients; however, the role of picocyanobacteria gardening in the Lake Tanganyika ecosystem and its medusae requires quantification.

Keywords

Genetics Jellyfish Hydromedusa Stable isotopes Symbiosis UV light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was a part of the FAO/FINNIDA Lake Tanganyika Research Project GCP/RAF/271/FIN “Research for the Management of the Fisheries on Lake Tanganyika (LTR)”. Additional funding was received from the Academy of Finland (Grants 44130, 52271 and 201414), the University of Turku Foundation and the Universities of Turku, Kuopio and Jyväskylä, Finland. We also thank Jitka Jezberova and David Fewer for commenting the picocyanobacterial systematics, and the reviewers and editors for their assistance.

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.PubMedCrossRefGoogle Scholar
  2. Bosma E. M., S. Muhoza & I. Zulu, 1998. The gulf net sample results of five cruises with the R/V Tanganyika Explorer. FAO/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika. GCP/RAF/271/FIN-TD/81 (En): 24.Google Scholar
  3. Bouillon, J., 1954. A hydropolyp in the biological cycle of a freshwater jellyfish. Nature 174: 1112.CrossRefGoogle Scholar
  4. Boulenger, C. L., 1911. On some points in the anatomy and bud-formation of Limnocnida tanganicæ. Quarterly Journal of Microscopic Sciences 57: 83–106.Google Scholar
  5. Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift system. Geology 21: 511–514.CrossRefGoogle Scholar
  6. Coulter, G. W., 1991. Lake Tanganyika and its Life. British Museum, Natural History & Oxford University Press, London. 354.Google Scholar
  7. Coulter, G. W., 1994. Lake Tanganyika. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Advances in Limnology, 44: 13–18.Google Scholar
  8. Coulter, G. W. & R. H. Spigel, 1991. Hydrodynamics. In Coulter, G. W. (ed.), Lake Tanganyika and its Life. Oxford University Press, London: 49–75.Google Scholar
  9. Crosbie, N. D., M. Pockl & T. Weisse, 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Applied and Environmental Microbiology 69: 5716–5721.PubMedCrossRefGoogle Scholar
  10. De Wever, A., K. Muylaert, D. Langlet, L. Alleman, J.-P. Descy, L. Andre, C. Cocquyt & W. Vyverman, 2008a. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshwater Biology 53: 264–277.Google Scholar
  11. De Wever, A., K. Van der Gucht, K. Muylaert, S. Cousin & W. Vyverman, 2008b. Clone library analysis reveals an unusual composition and strong habitat partitioning of pelagic bacterial communities in Lake Tanganyika. Aquatic Microbial Ecology 50: 113–122.CrossRefGoogle Scholar
  12. Dodson, S. I. & S. D. Cooper, 1983. Trophic relationships of the freshwater jellyfish Craspedacusta sowerbyi Lankester 1880. Limnology and Oceanography 28: 345–351.CrossRefGoogle Scholar
  13. Dumont, H. J., 1994a. The distribution and ecology of fresh- and brackish-water medusae of the world. Hydrobiologia 272: 1–12.CrossRefGoogle Scholar
  14. Dumont, H. J., 1994b. Ancient lakes have simplified pelagic food webs. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 44: 223–234.Google Scholar
  15. Ernst, A., S. Becker, U. I. A. Wollenzien & C. Postius, 2003. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149: 217–228.PubMedCrossRefGoogle Scholar
  16. Erwin, P. M. & R. W. Thacker, 2008. Phototrophic nutrition and symbiont diversity of two Caribbean sponge–cyanobacteria symbioses. Marine Ecology Progress Series 362: 139–147.CrossRefGoogle Scholar
  17. France, R. L. & R. H. Peters, 1997. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Canadian Journal of Fisheries and Aquatic Science 54: 1255–1258.CrossRefGoogle Scholar
  18. Goy, J., 1977. Sur les Limnocnida africaines (Cnidaires: Limnoméduses). Bulletin de l’Institut francais d’Afrique Noire, série A 39: 563–582.Google Scholar
  19. Green, J., 1998. Plankton associated with medusae of the freshwater jellyfish Craspedacusta sowerbyi (Lankester) in a Thames backwater. Freshwater Forum 11: 69–76.Google Scholar
  20. Hamner, W. H., R. W. Gilmer & P. P. Hamner, 1982. The physical, chemical and biological characteristics of a stratified, saline sulfide lake in Palau. Limnology and Oceanography 27: 896–909.CrossRefGoogle Scholar
  21. Hofmann, D. K. & B. P. Kremer, 1981. Carbon metabolism and strobilation of Cassiopea andromeda (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates. Marine Biology 65: 25–33.CrossRefGoogle Scholar
  22. Hylander, S. & L.-A. Hansson, 2010. Vertical migration mitigates UV effects on zooplankton community composition. Journal of Plankton Research 32: 971–980.CrossRefGoogle Scholar
  23. Jankowski, T., 2000. Chemical composition and biomass parameters of a population of Craspedacusta sowerbii Lank 1880 (Cnidaria: Limnomedusa). Journal of Plankton Research 22: 1329–1340.CrossRefGoogle Scholar
  24. Jankowski, T., 2001. The freshwater medusae of the world—a taxonomic and systematic literature study with some remarks on other inland water jellyfish. Hydrobiologia 462: 91–113.Google Scholar
  25. Jankowski, T., T. Strauss & H. T. Ratte, 2005. Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. Journal of Plankton Research 27: 811–823.CrossRefGoogle Scholar
  26. Kremer, P., J. Costello, J. Kremer & M. Canino, 1990. Significance of photosynthetic endosymbionts to the carbon budget of the scyphomedusa Linuche unquiculata. Limnology and Oceanography 35: 609–624.CrossRefGoogle Scholar
  27. Kurki, H., 1998. Results of plankton net and torpedo sampling during cruises on board R/V Tanganyika Explorer. FAO/FINNIDA Research for the management of the fisheries on Lake Tanganyika, GCP/RAF/271/FIN-TD/85 (En): 33.Google Scholar
  28. Kurki, H., P. Mannini, I. Vuorinen, E. Aro, H. Mölsä & O. V. Lindqvist, 1999. Macrozooplankton communities in Lake Tanganyika indicate food chain differences between the northern part and the main basins. Hydrobiologia 407: 123–129.CrossRefGoogle Scholar
  29. Langenberg, V. T., J. Sarvala & R. Roijackers, 2003. Effect of wind induced water movements on nutrients, chlorophyll-a, and primary production in Lake Tanganyika. Aquatic Ecosystem Health & Management 6: 279–288.CrossRefGoogle Scholar
  30. Langenberg, V. T., J.-M. Tumba, K. Tshibangu, C. Lukwesa, D. Chitamwebwa, D. Bwebwa, L. Makasa & R. Roijackers, 2008. Heterogeneity in physical, chemical and plankton-community structures in Lake Tanganyika. Aquatic Ecosystem Health & Management 11: 16–28.CrossRefGoogle Scholar
  31. Lesser, M. P., C. H. Mazel, M. Y. Gorbunov & P. Falkowski, 2004. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305: 997–1000.PubMedCrossRefGoogle Scholar
  32. McCloskey, L. R., L. Muscatine & F. P. Wilkerson, 1994. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Marine Biology 119: 13–22.CrossRefGoogle Scholar
  33. McCutchan, J. H., W. M. Lewis Jr., C. Kendall & C. C. McGarth, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  34. Muscatine, L. & R. E. Marian, 1982. Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnology and Oceanography 27: 910–917.CrossRefGoogle Scholar
  35. Muscatine, L., F. P. Wilkerson & L. R. McCloskey, 1986. Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp.). Marine Ecology Progress Series 32: 279–290.CrossRefGoogle Scholar
  36. Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.PubMedCrossRefGoogle Scholar
  37. Pitt, K. A., K. Koop & D. Rissik, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). Journal of Experimental Marine Biology and Ecology 315: 71–86.CrossRefGoogle Scholar
  38. Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616: 133–149.CrossRefGoogle Scholar
  39. Plisnier, P. D., D. Chitamwebwa, L. M. Mwape, K. Tshibangu, V. T. Langenberg & E. Coenen, 1999. Limnological annual cycle inferred from physico-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407: 45–58.CrossRefGoogle Scholar
  40. Rantakokko-Jalava, K., S. Nikkari, J. Jalava, E. Eerola, M. Skurnik, O. Meurman, O. Ruuskanen, A. Alanen, E. Kotilainen, P. Toivanen & P. Kotilainen, 2000. Direct amplification of rRNA genes in diagnosis of bacterial infections. Journal of Clinical Microbiology 38: 32–39.PubMedGoogle Scholar
  41. Rayner, N. A. & C. C. Appleton, 1989. Occurrence of introduced Craspedacusta sowerbii and indigenous Limnocnida tanganjicae (Cnidaria: Limnomedusae) in Southern Africa. Environmental Conservation 16: 267–270.CrossRefGoogle Scholar
  42. Rhode, S. C., M. Pawlowski & R. Tollrian, 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412: 69–72.PubMedCrossRefGoogle Scholar
  43. Rumpho, M. E., K. N. Pelletreau, A. Moustafa & D. Bhattacharya, 2011. The making of a photosynthetic animal. Journal of Experimental Biology 214: 303–311.PubMedCrossRefGoogle Scholar
  44. Sarvala, J., K. Salonen, M. Järvinen, E. Aro, T. Huttula, P. Kotilainen, H. Kurki, V. Langenberg, P. Mannini, P.-D. Plisnier, I. Vuorinen, H. Mölsä & O. V. Lindqvist, 1999. Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia 407: 149–173.CrossRefGoogle Scholar
  45. Sarvala, J., S. Badende, D. Chitamwebwa, P. Juvonen, L. Mwape, H. Mölsä, N. Mulimbwa, K. Salonen, M. Tarvainen & K. Vuorio, 2003. Size-fractionated δ15N and δ13C isotope ratios elucidate the role of the microbial food web in the pelagial of Lake Tanganyika. Aquatic Ecosystem Health & Management 6: 241–250.CrossRefGoogle Scholar
  46. Schuyler, Q. & B. K. Sullivan, 1997. Light responses and diel migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms. Journal of Plankton Research 19: 1417–1428.CrossRefGoogle Scholar
  47. Sharma, J. G. & R. Chakrabarti, 2000. Seasonal occurrence of freshwater medusa Limnocnida indica annandale (Cnidaria: Limnomedusae) in a lake associated with the river Yamuna, India. Aquatic Ecology 34: 205–207.CrossRefGoogle Scholar
  48. Smith, A. S. & J. E. Alexander Jr., 2008. Potential effects of the freshwater jellyfish Craspedacusta sowerbii on zooplankton community abundance. Journal of Plankton Research 30: 1323–1327.CrossRefGoogle Scholar
  49. Stefani, F., B. Leoni, A. Marieni & L. Garibaldi, 2010. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in Northern Italy. Journal of Limnology 69: 189–192.CrossRefGoogle Scholar
  50. Stenuite, S., A.-L. Tarbe, H. Sarmento, F. Unrein, S. Pirlot, D. Sinyinza, S. Thill, M. Lecomte, B. Leporcq, J. M. Gasol & J.-P. Descy, 2009. Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. Journal of Plankton Research 31: 1531–1544.CrossRefGoogle Scholar
  51. Tiercelin, J. & A. Mondeguer, 1990. The geology of the Tanganyika Trough. In Coulter, G. (ed.), Lake Tanganyika and its Life. Oxford University Press, London: 7–48.Google Scholar
  52. Tiirola, M. A., M. K. Männistö, J. A. Puhakka & M. S. Kulomaa, 2002a. Isolation and characterization of Novosphingobium sp. MT1, a dominant polychlorophenol degrading strain in a groundwater bioremediation system. Applied and Environmental Microbiology 68: 173–180.PubMedCrossRefGoogle Scholar
  53. Tiirola, M., E. T. Valtonen, P. Rintamäki-Kinnunen & M. Kulomaa, 2002b. Diagnosis of flavobacteriosis by direct amplification of rRNA genes. Diseases of Aquatic Organisms 51: 93–100.PubMedCrossRefGoogle Scholar
  54. Tiirola, M. A., J. E. Suvilampi, M. S. Kulomaa & J. A. Rintala, 2003. Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR). Water Research 37: 2259–2268.PubMedCrossRefGoogle Scholar
  55. Todd, B. D., D. J. Thornhill & W. K. Fitt, 2006. Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Marine Pollution Bulletin 52: 515–521.PubMedCrossRefGoogle Scholar
  56. Trench, R. K., 1993. Microalgal-invertebrate symbiosis: a review. Endocytosis Cell Research 9: 135–175.Google Scholar
  57. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.PubMedCrossRefGoogle Scholar
  58. Viherluoto, M., 1999. The food utilisation and diel feeding pattern of shrimps (Atyidea and Palaemonidea) in Lake Tanganyika. In Mölsä, H., K. Salonen & J. Sarvala (eds), Results of the LTR’s 20th Multi-Disciplinary Cruise. FAO/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika. GCP/RAF/271/FIN-TD/93 (En): 96.Google Scholar
  59. Vuorio, K., M. Nuottajärvi, K. Salonen & J. Sarvala, 2003. Spatial distribution of phytoplankton and picocyanobacteria in Lake Tanganyika, in March–April 1998. Aquatic Ecosystem Health & Management 6: 268–278.CrossRefGoogle Scholar
  60. Vuorio, K., M. Meili & J. Sarvala, 2006. Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater Biology 51: 807–822.CrossRefGoogle Scholar
  61. Williamson, C. E., 1995. What role does UV-B radiation play in freshwater ecosystems? Limnology and Oceanography 40: 386–392.CrossRefGoogle Scholar
  62. Woolridge, S. A., 2010. Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32: 615–625.CrossRefGoogle Scholar
  63. Yellowlees, D., T. A. V. Rees & W. Leggat, 2008. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell and Environment 31: 679–694.PubMedCrossRefGoogle Scholar
  64. Zagarese, H. E., M. Feldman & C. E. Williamson, 1997. UV-B-induced damage and photoreactivation in three species of Boeckella (Copepoda, Calanoida). Journal of Plankton Research 19: 357–367.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kalevi Salonen
    • 1
    Email author
  • Pia Högmander
    • 1
  • Victor Langenberg
    • 2
  • Hannu Mölsä
    • 3
  • Jouko Sarvala
    • 4
  • Anne Tarvainen
    • 1
  • Marja Tiirola
    • 1
  1. 1.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
  2. 2.Department of Water Quality and EcologyDELTARESDelftThe Netherlands
  3. 3.Fish Innovation CentreTervoFinland
  4. 4.Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations