Advertisement

Comparative phylogeography of meroplanktonic species, Aurelia spp. and Rhizostoma pulmo (Cnidaria: Scyphozoa) in European Seas

  • Andreja RamšakEmail author
  • Katja Stopar
  • Alenka Malej
JELLYFISH BLOOMS
  • 663 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 220)

Abstract

Mass occurrences of scypozoan medusae have become increasingly common in recent decades in European seas, including species in the genera Aurelia and Rhizostoma. We inferred the phylogeographic patterns of metagenetic scyphozoa Aurelia spp. and Rhizostoma pulmo from mitochondrial COI and nuclear ITS regions. No genetic structure was detected in R. pulmo over the Mediterranean Sea. By contrast, the phylogeographic analyses confirmed the separation of Aurelia spp. to several proposed cryptic species. Our results do not support the null hypothesis that both genera have concordant phylogeographic patterns. The resolvable parsimony network of haplotypes was retrieved for Aurelia aurita, Aurelia sp. 5, and Aurelia sp. 8 without connectivity between them and no genetic structure were found within those groups. Even though evidence of hybridization was found between A. aurita and Aurelia sp. 5, that did not break down the phylogenetic separation among them. The lowest haplotype and nucleotide diversity were found in samples of Aurelia sp. 8 and R. pulmo from the northern Adriatic, which acts as a sink area due to strong genetic drift. These new findings will facilitate linking the phenotype of the organism and its ability to survive in a particular environment—which shapes phylogeographic patterns.

Keywords

Phylogeny Genetic markers mtDNA ITS region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are very grateful to the people who helped us with the samples: Dror Angel (Israel), Diana Astorga Garcia (Spain), Reinhold Hanel (Germany), Manuela Krakau (Germany), Bojan Marčeta (Slovenia), Hermes Mianzan (Argentina), Mohamed Néjib Daly Yahia (Tunisia), Tamara A. Shiganova (Russia), and Maciej Wołowicz and Michal Olenycz (Poland). Further thanks are also given to Peter Trontelj for helpful comments on phylogenetic analysis. This research was supported by the Slovenian Research Agency Program P1-0237, the European Commission 6th Framework Programme: MarBEF NoE (Contract No. GOCET-2003-505446) and SESAME project (Contract No. GOCE-036949).

Supplementary material

978-94-007-5316-7_6_MOESM1_ESM.doc (224 kb)
Supplementary material 1 (JPG 182 kb)

References

  1. Akaike, H., 1973. Information theory as an extension of the maximum-likelihood principle. In Petrov, B. N. & F. Csaki (eds), Second International Symposium on Information Theory. Akademiai Kiado, Budapest: 267–281.Google Scholar
  2. Avise, J. C., 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge.Google Scholar
  3. Avise, J. C., 2009. Phylogeography: retrospect and prospect. Journal of Biogeography 36: 3–15.CrossRefGoogle Scholar
  4. Ayre, D. J., T. E. Minchinton & C. Perrin, 2009. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Molecular Ecology 18: 1887–1903.PubMedCrossRefGoogle Scholar
  5. Ballard, J. W. O. & R. G. Melvin, 2010. Linking the mitochondrial genotype to the organismal phenotype. Molecular Ecology 19: 1523–1539.PubMedCrossRefGoogle Scholar
  6. Blier, P. U. & H. Lemieux, 2001. The impact of the thermal sensitivity of cytochrome c oxidase on the respiration of Arctic charr red muscle mitochondria. Journal of Comparative Physiology B 171: 247–253.CrossRefGoogle Scholar
  7. Calderón, I., J. Garrabou & D. Aurelle, 2006. Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. Journal of Experimental Marine Biology and Ecology 336: 184–197.CrossRefGoogle Scholar
  8. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.PubMedCrossRefGoogle Scholar
  9. Dawson, M. N., 2001. Phylogeography in coastal marine animals: a solution from California? Journal of Biogeography 28: 723–736.CrossRefGoogle Scholar
  10. Dawson, M. N., 2003. Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Marine Biology 143: 369–379.CrossRefGoogle Scholar
  11. Dawson, M. N., 2005. Incipient speciation of Catostylus mosaicus (Syphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia. Journal of Biogeography 32: 515–533.CrossRefGoogle Scholar
  12. Dawson, M. N. & D. K. Jacobs, 2001. Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biological Bulletin 200: 92–96.PubMedCrossRefGoogle Scholar
  13. Dawson, M. N., A. S. Gupta & M. H. England, 2005. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences of the United States of America 102: 11968–11973.PubMedCrossRefGoogle Scholar
  14. Debes, P. V., F. E. Zachos & R. Hanel, 2008. Mitochondrial phylogeography of the European sprat (Sprattus sprattus L., Clupeide) reveals isolated climatically vulnerable populations in the Mediterranean Sea and range expansion in the northeast Atlantic. Molecular Ecology 17: 3873–3888.PubMedCrossRefGoogle Scholar
  15. Elder, J. F. & B. J. Turner, 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. The Quarterly Review of Biology 70(3): 297–320.PubMedCrossRefGoogle Scholar
  16. Erpenbeck, D., J. N. A. Hooper & G. Wörheide, 2005. CO1 phylogenies in diploblasts and the ‘Barcoding of Life’ – are we sequencing a suboptimal partition? Molecular Ecology Notes 6: 550–553.CrossRefGoogle Scholar
  17. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to mitochondrial restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  18. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase I subunit from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  19. Fuentes, V., I. Straehler-Pohl, D. Atienza, I. Franco, U. Tilves, M. Gentile, M. Acevedo, A. Olariaga & J. M. Gili, 2011. Life cycle of the jellyfish Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution, seasonality and inter-annual variability along Catalan coast and the Mar Menor (Spain, NW Mediterranean). Marine Biology 158: 2247–2266.CrossRefGoogle Scholar
  20. Gohar, H. A. F. & A. M. Eisawy, 1960. The development of Casiopea andromeda (Scyphomedusae). Publications of the Marine Biology Station of Al Ghardaqa 11: 147–190.Google Scholar
  21. Greenberg, N., R. L. Garthwaite & D. C. Potts, 1996. Allozyme and morphological evidence for a newly introduced species of Aurelia aurita in San Francisco Bay, California. Marine Biology 125: 401–410.CrossRefGoogle Scholar
  22. Hamner, W. M. & R. M. Jenssen, 1974. Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Animal Zoology 14: 833–849.Google Scholar
  23. Holland, B. S., M. N. Dawson, G. L. Crow & D. K. Hofmann, 2004. Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology 145: 1119–1128.CrossRefGoogle Scholar
  24. Holst, S., I. Sötje, H. Tiemann & G. Jarms, 2007. Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with the studies on cnidocysts and statoliths. Marine Biology 151: 1695–1710.CrossRefGoogle Scholar
  25. Ishii, H. & U. Båmstedt, 1998. Food regulation of growth and maturation in a natural population of Aurelia aurita (L.). Journal of Plankton Research 20: 805–816.CrossRefGoogle Scholar
  26. Keane, T. M., C. J. Creevey, M. M. Pentony, T. J. Naughton & O. J. McInerney, 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are justified. BMC Evolutionary Biology 6: 29.PubMedCrossRefGoogle Scholar
  27. Kikinger, R., 1992. Cotylorhiza tuberculata (Cnidaria: Scyphozoa) − life history of a stationary population. Marine Ecology 13: 333–362.CrossRefGoogle Scholar
  28. Kogovšek, T., B. Bogunovič & A. Malej, 2010. Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200 year time series. Hydrobiologia 217: 81–96.CrossRefGoogle Scholar
  29. Kramp, P. L., 1961. Synopsis of the medusae of the world. Journal of the Marine Biology Association of the United Kingdom 40: 5–469.Google Scholar
  30. Kuo, C. H. & J. C. Avise, 2005. Phylogeographic breaks in low-dispersal species: the emergence of concordance across gene trees. Genetics 124: 179–186.Google Scholar
  31. Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.PubMedCrossRefGoogle Scholar
  32. Lilley, M. S. K., S. E. Beggs, T. K. Doyle, V. J. Hobson, K. H. P. Stromberg & G. C. Hays, 2011. Global patterns of epipelagic gelatinous zooplankton biomass. Marine Biology. doi: 10.1007/s00227-011-1744-1.
  33. Malej, A., T. Kogovšek, A. Ramšak & L. Catenacci, 2012. Blooms and population dynamics of moon jellyfish in the Northern Adriatic. Cahiers de Biologie Marine 53: 3.Google Scholar
  34. Mayer, A. G., 1910. Medusae of the World III: The Scyphomedusae. Carnegie Institution of Washington, Washington.Google Scholar
  35. Patarnello, T., F. A. M. J. Volckaert & R. Castilho, 2007. Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? Molecular Ecology 16: 4426–4444.PubMedCrossRefGoogle Scholar
  36. Pelc, R. A., R. R. Warner & S. D. Gaines, 2009. Geographical patterns of genetic structure in marine species with contrasting life histories. Journal of Biogeography 36: 1881–1890.CrossRefGoogle Scholar
  37. Rambaut, A., 2006. FigTree: Tree Figure Drawing Tool, version 1.2.2. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh.Google Scholar
  38. Rambaut, A. & A. J. Drummond, 2009. TRACER: MCMC Trace Analysis Tool. 1.4.1 edn. Institute of Evolution Biology, Edinburgh. http://tree.bio.ed.ac.uk/software/tracer. Accessed 18 Jan 2010.
  39. Rippingale, R. J. & S. J. Kelly, 1995. Reproduction and survival of Phyllorhiza punctata (Cnidaria: Rhizostomeae) in a seasonally fluctuating salinity regime in Western Australia. Marine & Freshwater Research 46: 1145–1151.CrossRefGoogle Scholar
  40. Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedCrossRefGoogle Scholar
  41. Russell, F. S., 1970. The Medusae of the British Isles: II. Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae. Cambridge University Press, London.Google Scholar
  42. Schlötterer, C. & D. Tautz, 1994. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Current Biology 4: 777–783.PubMedCrossRefGoogle Scholar
  43. Schroth, W., G. Jarms, B. Streit & B. Schierwater, 2002. Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evolutionary Biology 2: 1–10.PubMedCrossRefGoogle Scholar
  44. Shearer, T. L., M. J. H. van Oppen, S. L. Romano & G. Wörheide, 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11: 2475–2487.PubMedCrossRefGoogle Scholar
  45. Somero, G. N., 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integrative Comparative Biology 42: 780–789.CrossRefGoogle Scholar
  46. Stopar, K., A. Ramšak, P. Trontelj & A. Malej, 2010. Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaestomeae) across European seas. Molecular Phylogenetics and Evolution 57: 417–428.PubMedCrossRefGoogle Scholar
  47. Sugiura, Y., 1965. On the life-history of rhizostome medusae. III. On the effects of temperature on the strobilation of Mastigias papua. Biological Bulletin 128: 493–496.CrossRefGoogle Scholar
  48. Sugiura, Y., 1966. On the life-history of rhizostome medusae IV, Cephea cephea. Embryologia 9: 105–122.PubMedCrossRefGoogle Scholar
  49. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.PubMedCrossRefGoogle Scholar
  50. White, T. J., T. Bruns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., G. H. Gelfand, J. J. Sninsky & T. J. White (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego: 315–332.Google Scholar
  51. Wörheide, G., S. A. Nichols & J. Goldberg, 2004. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): implications for phylogenetic studies. Molecular Phylogenetics and Evolution 33: 816–830.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.National Institute of BiologyMarine Biology StationPiranSlovenia

Personalised recommendations