Foods of Velella velella (Cnidaria: Hydrozoa) in algal rafts and its distribution in Irish seas

  • Jennifer E. PurcellEmail author
  • Emmett Clarkin
  • Thomas K. Doyle
Part of the Developments in Hydrobiology book series (DIHY, volume 220)


The pleustonic hydrozoan, Velella velella, occurs throughout tropical to cold-temperate oceans of the world and sometimes are stranded in masses along hundreds of kilometers of beaches. In June 2009, we encountered algal rafts in the Celtic Sea containing many V. velella that we immediately preserved for gut content analysis. Available prey were enumerated from raft-associated fauna and zooplankton sampled nearby. The identifiable prey (331) in V. velella comprised 78% raft-associated prey (primarily harpacticoid copepods, cumaceans, small fish) and 22% pelagic prey (calanoid copepods, barnacle nauplii, fish eggs). Comparison of ingested with available prey showed selection for fish eggs and small fish, among others; therefore, the null hypothesis, that V. velella consumed all available prey equally, was rejected. Transport by wind and water concentrate Velella spp. in convergences with algal rafts, which suggests that they are important predators of raft—as well as pelagic fauna. A visual survey in September 2004 across the Celtic Sea and beach-stranding data show that V. velella is very abundant in Irish waters at times. Its circumpolar abundance, consumption of pelagic prey and production from symbiotic zooxanthellae, and mass deposition on beaches suggest that V. velella is important in open-ocean carbon cycling and in transport of pelagic production to landmasses.


Jellyfish Fish Fish eggs Zooplankton Rafting Convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. A., 1960. A contribution to the biology and postlarval development of the Sargassum fish, Histro histro (Linneaus), with a discussion of the Sargassum complex. Bulletin of Marine Science of the Gulf and Caribbean 10: 55–82.Google Scholar
  2. Bieri, R., 1961. Post-larval food of the pelagic coelenterate, Velella lata. Pacific Science 15: 553–556.Google Scholar
  3. Bieri, R., 1977. The ecological significance of seasonal occurrence and growth rate of Velella (Hydrozoa). Publication of the Seto Mar. Biological Laboratory 24: 63–76.Google Scholar
  4. Daniel, R., 1976. Chondrophora of the Indian Ocean. Journal of the Marine Biological Association of India 18: 110–121.Google Scholar
  5. Davenport, J. & E. I. S. Rees, 1993. Observations on neuston and floating weed patches in the Irish Sea. Estuarine, Coastal and Shelf Science 36: 395–411.CrossRefGoogle Scholar
  6. Doyle, T. K., J. D. R. Houghton, S. M. Buckley, G. C. Hays & J. Davenport, 2007. The broad-scale distribution of five jellyfish species across a temperate coastal environment. Hydrobiologia 579: 29–39.CrossRefGoogle Scholar
  7. Emmett, R. L. & G. K. Krutzkowsky, 2008. Nocturnal feeding of Pacific hake and juvenile mackerel off the mouth of the Columbia River, 1998–2004: implications for juvenile salmon predation. Transactions of the American Fisheries Society 137: 657–676.CrossRefGoogle Scholar
  8. Evans, F., 1986. Velella velella (L.), the ‘by-the-wind-sailor’, in the North Pacific Ocean in 1985. Marine Observer 56: 196–200.Google Scholar
  9. Fedoryako, B. I., 1989. A comparative characteristic of the oceanic fish assemblage associated with floating debris. Journal of Ichthyology 29: 128–137.Google Scholar
  10. Flux, J. E. C., 2008. First mass stranding of Velella velella in New Zealand. Marine Biodiversity Records 1: 1–2.CrossRefGoogle Scholar
  11. García, A., F. Alemany, P. Velez-Belchí, J. M. Rodríguez, J. L. López Jurado, C. González Pola & J. M. de la Serna, 2003. Bluefin and frigate tuna spawning off the Balearic archipelago in the environmental conditions observed during the 2002 spawning season. Collective Volume of Scientifics Papers ICCAT 55: 1261–1270.Google Scholar
  12. Houghton, J. D. R., T. K. Doyle, J. Davenport & G. C. Hays, 2006a. Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air. Marine Ecology Progress Series 314: 159–170.CrossRefGoogle Scholar
  13. Houghton, J. D. R., T. K. Doyle, J. Davenport & G. C. Hays, 2006b. The ocean sunfish Mola mola: insights into distribution, abundance and behaviour in the Irish and Celtic Seas. Journal of the Marine Biological Association of the United Kingdom 86: 1237–1243.CrossRefGoogle Scholar
  14. Ingólfsson, A., 1995. Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Marine Biology 122: 13–21.CrossRefGoogle Scholar
  15. Ingólfsson, A., 1998. Dynamics of macrofaunal communities of floating seaweed clumps off western Iceland: a study of patches on the surface of the sea. Journal of Experimental Marine Biology and Ecology 231: 119–137.CrossRefGoogle Scholar
  16. Kemp, P. F., 1986. Deposition of organic matter on a high-energy sand beach by a mass stranding of the cnidarian Velella velella (L.). Estuarine, Coastal and Shelf Science 23: 575–579.CrossRefGoogle Scholar
  17. Kingsford, M. J., 1995. Drift algae: a contribution to near-shore habitat complexity in the pelagic environment and an attractant for fish. Marine Ecology Progress Series 116: 297–301.CrossRefGoogle Scholar
  18. Kingsford, M. J. & J. H. Choat, 1985. The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limnology and Oceanography 30: 618–630.CrossRefGoogle Scholar
  19. Kirkpatrick, P. A. & P. R. Pugh, 1984. Siphonophores and Velellids. In Kermack, D. M. & R. S. K. Barnes (eds), Synopsis of the British Fauna no. 29. Pittman Press, Bath: 1–155.Google Scholar
  20. Komatsu, T., K. Tatsukawa, J. B. Filippa, T. Sagawa, D. Matsunaga, A. Mikami, K. Ishida, T. Ajisaka, K. Tanaka, M. Aoki, W.-D. Wang, H.-F. Liu, S.-D. Zhang, M.-D. Zhou & T. Sugimoto, 2007. Distribution of drifting seaweeds in eastern East China Sea. Journal of Marine Systems 67: 245–252.CrossRefGoogle Scholar
  21. Larson, R. J., 1980. The medusa of Velella velella (Linnaeus, 1758) (Hydrozoa, Chondrophorae). Journal of Plankton Research 2: 183–186.CrossRefGoogle Scholar
  22. Martinussen, M. B. & U. Båmstedt, 1999. Nutritional ecology of gelatinous planktonic predators. Digestion rate in relation to type and amount of prey. Journal of Experimental Marine Biology and Ecology 232: 61–84.CrossRefGoogle Scholar
  23. Matthew, C. H. & R. J. Orth, 2002. Long-distance dispersal potential in a marine macrophyte. Ecology 83: 3319–3330.CrossRefGoogle Scholar
  24. McCormick, T. B., L. M. Buckley, J. Brogan & L. M. Perry, 2008. Drift macroalgae as a potential dispersal mechanism for the white abalone Haliotis sorenseni. Marine Ecology Progress Series 362: 225–232.CrossRefGoogle Scholar
  25. McGrath, D., 1985. The by-the-wind sailor Velella velella (L.) (Coelenterata: Hydrozoa) in Irish waters 1976–1984. The Irish Naturalists’ Journal 21: 479–484.Google Scholar
  26. McGrath, D., 1994. Extraordinary occurrences of the by-the-wind sailor Velella velella (L.) (Cnidaria) in Irish waters in 1992. The Irish Naturalists’ Journal 24: 383–388.Google Scholar
  27. Mianzan, H. W. & C. V. Girola, 1990. The pleustonic coelenterates Physalia physalis (Linne, 1758), Velella velella (Linne, 1758) and Porpita umbella Muller, 1776 in southwestern Atlantic waters. Investigaciones Marinas CICIMAR 5: 97–98.Google Scholar
  28. Ó Foighil, D., B. A. Marshall, T. J. Hilbish & M. A. Pino, 1999. Trans-Pacific range extension by rafting is inferred for the flat oyster Ostrea chilensis. Biological Bulletin 196: 122–126.CrossRefGoogle Scholar
  29. Parker, D. M., W. J. Cooke & G. H. Balazs, 2005. Diet of oceanic loggerhead sea turtles (Caretta caretta) in the Central North Pacific. Fishery Bulletin 103: 142–152.Google Scholar
  30. Pearre, S. Jr., 1982. Estimating prey preference by predators: uses of various indices, and a proposal of another based on χ2. Canadian Journal of Fisheries and Aquatic Science 39: 914–923.CrossRefGoogle Scholar
  31. Purcell, J. E., 1984. Predation on fish larvae by Physalia physalis, the Portuguese man of war. Marine Ecology Progress Series 19: 189–191.CrossRefGoogle Scholar
  32. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44.CrossRefGoogle Scholar
  33. Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451: 145–176.CrossRefGoogle Scholar
  34. Shenker, J. M., 1988. Oceanographic associations of neustonic larval and juvenile fishes and Dungeness crab megalopae off Oregon. Fishery Bulletin 86: 299–317.Google Scholar
  35. Thiel, M. & L. Gutow, 2005. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanography and Marine Biology: An Annual Review 43: 279–418.CrossRefGoogle Scholar
  36. Vandendriessche, S., M. Vincx & S. Degraer, 2006. Floating seaweed in the neustonic environment: a case study from Belgian coastal waters. Journal of Sea Research 55: 103–112.CrossRefGoogle Scholar
  37. Vandendriessche, S., M. Messiaen, S. O’Flynn, M. Vincx & S. Degraer, 2007. Hiding and feeding in seaweed: floating seaweed clumps as possible refuges or feeding grounds for fishes. Estuarine, Coastal and Shelf Science 71: 691–703.CrossRefGoogle Scholar
  38. Vermeer, K. & K. Devito, 1988. The importance of Paracallisoma coecus and myctophid fishes to nesting fork-tailed and Leach’s storm-petrels in the Queen Charlotte Islands, British Columbia. Journal of Plankton Research 10: 63–75.CrossRefGoogle Scholar
  39. Waters, J. M., 2008. Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. Journal of Biogeography 35: 417–427.CrossRefGoogle Scholar
  40. Wickham, D. E., 1979. The relationship between megalopae of the Dungeness crab, Cancer magister, and hydroid, Velella velella, and its influence on abundance estimates of C. magister megalopae. California Fish and Game 65: 184–186.Google Scholar
  41. Woltereck, R., 1904. Ueber die Entwicklung der Velella aus einer in der tiefe vorkommonden Larvae. Zoologische Jahrbuch Supplement 7, Festschrift A. Weissmann: 347–372.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jennifer E. Purcell
    • 1
    • 2
    Email author
  • Emmett Clarkin
    • 3
    • 4
  • Thomas K. Doyle
    • 2
  1. 1.Western Washington University, Shannon Point Marine CenterAnacortesUSA
  2. 2.Coastal and Marine Research Centre, ERI, University College CorkCobhIreland
  3. 3.School of Biological SciencesQueen’s UniversityBelfastNorthern Ireland, UK
  4. 4.Australian Institute of Marine Science PMB 3TownsvilleAustralia

Personalised recommendations