Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry

  • C. J. MooneyEmail author
  • M. J. Kingsford
Part of the Developments in Hydrobiology book series (DIHY, volume 220)


Chironex fleckeri medusae metamorphose from sessile polyps, possibly in estuarine environments, and migrate into coastal waters. The objective of this study was to critically test the anecdotal paradigm that the medusae originate in lower salinity waters. Laser-ablation inductively coupled plasma-mass spectrometry was used on C. fleckeri statoliths to test the hypothesis that C. fleckeri medusae only originate from low salinity tidal creeks. Statoliths were extracted from C. fleckeri medusae collected from multiple locations around tropical Australia. Strontium:Calcium (Sr:Ca) ratios were used as a proxy for salinity; where salinity remained consistent in the field, the ratio was compared with the elemental chemistry in statoliths. Sr:Ca ratios of the statolith core and edge zones showed some evidence that medusae originated in lower Sr:Ca levels and moved to higher levels as expected under the hypothesis. That pattern was not consistent, however, and sources from multiple oceanographic regimes were indicated. Core-to-edge elemental profiles of statoliths and concentric increments showed high variability in Sr:Ca ratios both within and between individuals. The ratios suggested that many jellyfish had been exposed to a wide range of oceanographic regimes, while others had spent their whole lives in high Sr:Ca ratio waters. Elemental chemistry and concentric increments in the CaSO4 matrix of cubomedusan statoliths provide a tool to study cubozoan ecology.


Jellyfish LA-ICPMS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Jamie Seymour and Matt Gordon for providing some archived statolith samples. The authors also thank Yi Hu at Advanced Analytical Centre, James Cook University for assistance with LA-ICPMS analyses, and the reviewers and editors for their help. Financial supports from the Marine and Tropical Science Research Facility and James Cook University are duly acknowledged.


  1. Abriel, W. & R. Nesper, 1993. Determination of crystal structure of CaSO4(H2O)0.5 by X-ray diffraction and potential profile calculations. Zeitschrift für Kristallographie 205: 99–113.CrossRefGoogle Scholar
  2. Arkhipkin, A. I., 2005. Statoliths as ‘black boxes’ (life recorders) in squid. Marine & Freshwater Research 56: 573–583.CrossRefGoogle Scholar
  3. Arkhipkin, A. I., S. E. Campana, J. Fitzgerald & S. R. Thorrold, 2004. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi). Canadian Journal of Fisheries and Aquatic Sciences 61: 1212–1224.CrossRefGoogle Scholar
  4. Campana, S. E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297.CrossRefGoogle Scholar
  5. Campana, S. E. & J. D. Neilson, 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42: 1014–1032.CrossRefGoogle Scholar
  6. Campana, S. E. & S. R. Thorrold, 2001. Otoliths, increments and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58: 30–38.CrossRefGoogle Scholar
  7. Campana, S. E., G. A. Chouinard, J. M. Hanson & A. Frechet, 1999. Mixing and migration of overwintering cod stocks near the mouth of the Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 56: 1873–1881.Google Scholar
  8. Chapman, D. M., 1985. X-ray microanalysis of selected coelenterate statoliths. Journal Marine Biology Association UK 65: 617–627.CrossRefGoogle Scholar
  9. Clarke, M. R., 1978. The cephalopod statolith – an introduction to its form. Journal Marine Biology Association UK 58: 701–712.CrossRefGoogle Scholar
  10. Coates, M. M., 2003. Visual ecology and functional morphology of Cubozoa (Cnidaria). Integrative and Comparative Biology 43: 542–548.PubMedCrossRefGoogle Scholar
  11. Coughlan, J. P., J. Seymour & T. F. Cross, 2006. Isolation and characterisation of seven polymorphic microsatellite loci in the box jellyfish (Chironex fleckeri, Cubozoa, Cnidaria). Molecular Ecology Notes 6: 41–43.CrossRefGoogle Scholar
  12. Currie, B. J. & S. P. Jacups, 2005. Prospective study of Chironex fleckeri and other box jellyfish stings in the “Top End” of Australia’s Northern Territory. Medical Journal Australia 183: 631–636.Google Scholar
  13. Daverat, F., J. Tomas, M. Lahaye, M. Palmer & P. Elie, 2005. Tracking continental habitat shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, estuarine and riverine eels of the Gironde–Garonne–Dordogne watershed. Marine & Freshwater Research 56: 619–627.CrossRefGoogle Scholar
  14. de Vries, M. C., B. M. Gillanders & T. S. Elsdon, 2005. Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity. Geochimica et Cosmochimica Acta 69: 4061–4072.CrossRefGoogle Scholar
  15. Elsdon, T. S. & B. M. Gillanders, 2005. Consistency of patterns between laboratory experiments and field collected fish in otolith chemistry: an example and applications for salinity reconstructions. Marine & Freshwater Research 56: 609–617.CrossRefGoogle Scholar
  16. Evans, R. D., P. Richner & P. M. Outridge, 1995. Micro-spatial variations in heavy metals in the teeth of walrus as determined by laser ablation ICP-MS: the potential for reconstructing a history of metal exposure. Archives of Environmental Contamination and Toxicology 28: 55–60.PubMedCrossRefGoogle Scholar
  17. Fallon, S. J., J. C. White & M. T. McCulloch, 2002. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochemica et Cosmochimica Acta 66: 45–62.CrossRefGoogle Scholar
  18. Fowler, A. J., B. M. Gillanders & K. C. Hall, 2005. Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure. Marine & Freshwater Research 56: 661–676.CrossRefGoogle Scholar
  19. Gillanders, B. M., 2001. Trace metals in four structures of fish and their use for estimates of stock structure. Fishery Bulletin 99: 410–419.Google Scholar
  20. Gillanders, B. M., 2005. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuarine, Coastal and Shelf Science 64: 47–57.CrossRefGoogle Scholar
  21. Gillanders, B. M. & M. J. Kingsford, 1996. Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series 141: 13–20.CrossRefGoogle Scholar
  22. Gordon, M. R. & J. E. Seymour, 2009. Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry. Hydrobiologia 616: 87–97.CrossRefGoogle Scholar
  23. Gordon, M., C. Hatcher & J. Seymour, 2004. Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530: 339–345.CrossRefGoogle Scholar
  24. Grimes, C. B. & M. J. Kingsford, 1996. How do riverine plumes of different sizes influence fish larvae: do they enhance recruitment? Marine & Freshwater Research 47: 191–208.CrossRefGoogle Scholar
  25. Hamner, W. M., M. S. Jones & P. P. Hamner, 1995. Swimming, feeding, circulation, and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa). Marine & Freshwater Research 46: 985–990.CrossRefGoogle Scholar
  26. Hartwick, R. F., 1991. Distribution ecology and behaviour of the early life stages of the box-jellyfish Chironex fleckeri. Hydrobiologia 216: 181–188.CrossRefGoogle Scholar
  27. Hellstrom, J., C. Paton, J. D. Woodhead & J. M. Hergt, 2008. Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. In Sylvester, P. (ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, Vol. 40: 343–348.Google Scholar
  28. Ikeda, Y., N. Arai, W. Sakamoto, H. Kidokoro & K. Yoshida, 1998. Microchemistry of the statoliths of the Japanese common squid Todarodes pacificus with special reference to its relation to the vertical temperature profiles of squid habitat. Fisheries Science 64: 179–184.Google Scholar
  29. Jackson, G. D., 1990. Age and growth of the tropical nearshore loliginid squid Sepioteuthis lessoniana determined from statolith growth-ring analysis. Fishery Bulletin US 88: 113–118.Google Scholar
  30. Kawamura, M., S. Ueno, S. Iwanaga, N. Oshiro & S. Kubota, 2003. The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) from Okinawa Island, Japan. Plankton Biology & Ecology 50: 37–42.Google Scholar
  31. Kingsford, M. J. & I. M. Suthers, 1994. Dynamic estuarine plumes and fronts: importance to small fish and plankton in coastal waters of NSW, Australia. Continental Shelf Research 14: 655–672.CrossRefGoogle Scholar
  32. Kingsford, M. J., J. E. Seymour & M. D. O’Callaghan, 2012. Abundance patterns of cubozoans on and near the Great Barrier Reef. Hydrobiologia. doi: 10.1007/s10750-012-1041-0
  33. Leng, M. J. & N. J. G. Pearce, 1999. Seasonal variation of trace element and isotopic composition in the shell of a coastal mollusk, Mactra isabelleana. Journal of Shellfish Research 18: 569–574.Google Scholar
  34. Longerich, H. P., S. E. Jackson & D. Günther, 1996. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11: 899–904.CrossRefGoogle Scholar
  35. Maillet, G. L. & J. D. M. Checkley, 1990. Effects of starvation on the frequency of formation and width of growth increments in sagittae of laboratory-reared Atlantic menhaden Brevoortia tyrannus larvae. Fishery Bulletin US 88: 155–165.Google Scholar
  36. McCulloch, M., M. Cappo, J. Aumend & W. Muller, 2005. Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Marine & Freshwater Research 56: 637–644.CrossRefGoogle Scholar
  37. Milton, D. A., I. Halliday, M. Sellin, R. Marsh, J. Staunton-Smith & J. Woodhead, 2008. The effect of habitat and environmental history on otolith chemistry of barramundi Lates calcarifer in estuarine population of a regulated tropical river. Estuarine, Coastal and Shelf Science 78: 301–315.CrossRefGoogle Scholar
  38. Pannella, G., 1971. Fish otoliths: daily growth layers and periodical patterns. Science 173: 1124–1127.CrossRefGoogle Scholar
  39. Richardson, C. A., 1988. Exogenous and endogenous rhythms of band formation in the shell of the clam Tapes philippinarum. Journal Experimental Marine Biology and Ecology 122: 105–126.CrossRefGoogle Scholar
  40. Rooker, J. R., D. H. Secor, V. S. Zdanowicz, G. De Metrio & L. O. Relini, 2003. Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fishery Oceanography 12: 75–84.CrossRefGoogle Scholar
  41. Sötje, I., F. Neues, M. Epple, W. Ludwig, A. Rack, M. Gordon, R. Boese & H. Tiemann, 2011. Comparison of statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach. Marine Biology 158: 1149–1161.CrossRefGoogle Scholar
  42. Straehler-Pohl, I. & G. Jarms, 2005. Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation. Marine Biology 147: 1271–1277.CrossRefGoogle Scholar
  43. Swan, S. C., A. J. Geffen, B. Morales-Nin, J. D. M. Gordon, T. Shimmield, T. Sawyer & E. Massuti, 2006. Otolith chemistry: an aid to stock separation of Helicolenus dactylopterus (bluemouth) and Merluccius merluccius (European hake) in the Northeast Atlantic and Mediterranean. ICES Journal of Marine Science 63: 504–513.CrossRefGoogle Scholar
  44. Thorrold, S. R., C. Latkoczy, P. K. Swart & C. M. Jones, 2001. Natal homing in a marine fish metapopulation. Science 291: 297–299.PubMedCrossRefGoogle Scholar
  45. Thorrold, S. R., G. P. Jones, M. E. Hellberg, R. S. Burton, S. E. Swearer, J. E. Niegel, S. G. Morgan & R. R. Warner, 2002. Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bulletin Marine Science 70: 291–308.Google Scholar
  46. Tibballs, J., 2006. Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon 48: 830–859.PubMedCrossRefGoogle Scholar
  47. Tiemann, H., I. Sötje, A. Becker, G. Jarms & M. Epple, 2006. Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp. Zoologischer Anzeiger 245: 13–17.CrossRefGoogle Scholar
  48. Ueno, S., C. Imai & A. Mitsutani, 1995. Fine growth rings found in statolith of a cubomedusa Carybdea rastoni. Journal of Plankton Research 17: 1381–1384.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Marine and Tropical Biology and ARC Centre of Excellence in Coral Reef StudiesJames Cook UniversityTownsvilleAustralia

Personalised recommendations