Skip to main content

Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry

  • JELLYFISH BLOOMS
  • Chapter
  • First Online:
Jellyfish Blooms IV

Part of the book series: Developments in Hydrobiology ((DIHY,volume 220))

Abstract

Chironex fleckeri medusae metamorphose from sessile polyps, possibly in estuarine environments, and migrate into coastal waters. The objective of this study was to critically test the anecdotal paradigm that the medusae originate in lower salinity waters. Laser-ablation inductively coupled plasma-mass spectrometry was used on C. fleckeri statoliths to test the hypothesis that C. fleckeri medusae only originate from low salinity tidal creeks. Statoliths were extracted from C. fleckeri medusae collected from multiple locations around tropical Australia. Strontium:Calcium (Sr:Ca) ratios were used as a proxy for salinity; where salinity remained consistent in the field, the ratio was compared with the elemental chemistry in statoliths. Sr:Ca ratios of the statolith core and edge zones showed some evidence that medusae originated in lower Sr:Ca levels and moved to higher levels as expected under the hypothesis. That pattern was not consistent, however, and sources from multiple oceanographic regimes were indicated. Core-to-edge elemental profiles of statoliths and concentric increments showed high variability in Sr:Ca ratios both within and between individuals. The ratios suggested that many jellyfish had been exposed to a wide range of oceanographic regimes, while others had spent their whole lives in high Sr:Ca ratio waters. Elemental chemistry and concentric increments in the CaSO4 matrix of cubomedusan statoliths provide a tool to study cubozoan ecology.

Guest editors: J. E. Purcell, H. Mianzan & J. R. Frost / Jellyfish Blooms: Interactions with Humans and Fisheries

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriel, W. & R. Nesper, 1993. Determination of crystal structure of CaSO4(H2O)0.5 by X-ray diffraction and potential profile calculations. Zeitschrift für Kristallographie 205: 99–113.

    Article  CAS  Google Scholar 

  • Arkhipkin, A. I., 2005. Statoliths as ‘black boxes’ (life recorders) in squid. Marine & Freshwater Research 56: 573–583.

    Article  Google Scholar 

  • Arkhipkin, A. I., S. E. Campana, J. Fitzgerald & S. R. Thorrold, 2004. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi). Canadian Journal of Fisheries and Aquatic Sciences 61: 1212–1224.

    Article  Google Scholar 

  • Campana, S. E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297.

    Article  CAS  Google Scholar 

  • Campana, S. E. & J. D. Neilson, 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42: 1014–1032.

    Article  Google Scholar 

  • Campana, S. E. & S. R. Thorrold, 2001. Otoliths, increments and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58: 30–38.

    Article  Google Scholar 

  • Campana, S. E., G. A. Chouinard, J. M. Hanson & A. Frechet, 1999. Mixing and migration of overwintering cod stocks near the mouth of the Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 56: 1873–1881.

    Google Scholar 

  • Chapman, D. M., 1985. X-ray microanalysis of selected coelenterate statoliths. Journal Marine Biology Association UK 65: 617–627.

    Article  Google Scholar 

  • Clarke, M. R., 1978. The cephalopod statolith – an introduction to its form. Journal Marine Biology Association UK 58: 701–712.

    Article  Google Scholar 

  • Coates, M. M., 2003. Visual ecology and functional morphology of Cubozoa (Cnidaria). Integrative and Comparative Biology 43: 542–548.

    Article  PubMed  Google Scholar 

  • Coughlan, J. P., J. Seymour & T. F. Cross, 2006. Isolation and characterisation of seven polymorphic microsatellite loci in the box jellyfish (Chironex fleckeri, Cubozoa, Cnidaria). Molecular Ecology Notes 6: 41–43.

    Article  CAS  Google Scholar 

  • Currie, B. J. & S. P. Jacups, 2005. Prospective study of Chironex fleckeri and other box jellyfish stings in the “Top End” of Australia’s Northern Territory. Medical Journal Australia 183: 631–636.

    Google Scholar 

  • Daverat, F., J. Tomas, M. Lahaye, M. Palmer & P. Elie, 2005. Tracking continental habitat shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, estuarine and riverine eels of the Gironde–Garonne–Dordogne watershed. Marine & Freshwater Research 56: 619–627.

    Article  CAS  Google Scholar 

  • de Vries, M. C., B. M. Gillanders & T. S. Elsdon, 2005. Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity. Geochimica et Cosmochimica Acta 69: 4061–4072.

    Article  Google Scholar 

  • Elsdon, T. S. & B. M. Gillanders, 2005. Consistency of patterns between laboratory experiments and field collected fish in otolith chemistry: an example and applications for salinity reconstructions. Marine & Freshwater Research 56: 609–617.

    Article  CAS  Google Scholar 

  • Evans, R. D., P. Richner & P. M. Outridge, 1995. Micro-spatial variations in heavy metals in the teeth of walrus as determined by laser ablation ICP-MS: the potential for reconstructing a history of metal exposure. Archives of Environmental Contamination and Toxicology 28: 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, S. J., J. C. White & M. T. McCulloch, 2002. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochemica et Cosmochimica Acta 66: 45–62.

    Article  CAS  Google Scholar 

  • Fowler, A. J., B. M. Gillanders & K. C. Hall, 2005. Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure. Marine & Freshwater Research 56: 661–676.

    Article  CAS  Google Scholar 

  • Gillanders, B. M., 2001. Trace metals in four structures of fish and their use for estimates of stock structure. Fishery Bulletin 99: 410–419.

    Google Scholar 

  • Gillanders, B. M., 2005. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuarine, Coastal and Shelf Science 64: 47–57.

    Article  Google Scholar 

  • Gillanders, B. M. & M. J. Kingsford, 1996. Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series 141: 13–20.

    Article  Google Scholar 

  • Gordon, M. R. & J. E. Seymour, 2009. Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry. Hydrobiologia 616: 87–97.

    Article  Google Scholar 

  • Gordon, M., C. Hatcher & J. Seymour, 2004. Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530: 339–345.

    Article  Google Scholar 

  • Grimes, C. B. & M. J. Kingsford, 1996. How do riverine plumes of different sizes influence fish larvae: do they enhance recruitment? Marine & Freshwater Research 47: 191–208.

    Article  Google Scholar 

  • Hamner, W. M., M. S. Jones & P. P. Hamner, 1995. Swimming, feeding, circulation, and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa). Marine & Freshwater Research 46: 985–990.

    Article  Google Scholar 

  • Hartwick, R. F., 1991. Distribution ecology and behaviour of the early life stages of the box-jellyfish Chironex fleckeri. Hydrobiologia 216: 181–188.

    Article  Google Scholar 

  • Hellstrom, J., C. Paton, J. D. Woodhead & J. M. Hergt, 2008. Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. In Sylvester, P. (ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, Vol. 40: 343–348.

    Google Scholar 

  • Ikeda, Y., N. Arai, W. Sakamoto, H. Kidokoro & K. Yoshida, 1998. Microchemistry of the statoliths of the Japanese common squid Todarodes pacificus with special reference to its relation to the vertical temperature profiles of squid habitat. Fisheries Science 64: 179–184.

    CAS  Google Scholar 

  • Jackson, G. D., 1990. Age and growth of the tropical nearshore loliginid squid Sepioteuthis lessoniana determined from statolith growth-ring analysis. Fishery Bulletin US 88: 113–118.

    Google Scholar 

  • Kawamura, M., S. Ueno, S. Iwanaga, N. Oshiro & S. Kubota, 2003. The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) from Okinawa Island, Japan. Plankton Biology & Ecology 50: 37–42.

    Google Scholar 

  • Kingsford, M. J. & I. M. Suthers, 1994. Dynamic estuarine plumes and fronts: importance to small fish and plankton in coastal waters of NSW, Australia. Continental Shelf Research 14: 655–672.

    Article  Google Scholar 

  • Kingsford, M. J., J. E. Seymour & M. D. O’Callaghan, 2012. Abundance patterns of cubozoans on and near the Great Barrier Reef. Hydrobiologia. doi:10.1007/s10750-012-1041-0

  • Leng, M. J. & N. J. G. Pearce, 1999. Seasonal variation of trace element and isotopic composition in the shell of a coastal mollusk, Mactra isabelleana. Journal of Shellfish Research 18: 569–574.

    Google Scholar 

  • Longerich, H. P., S. E. Jackson & D. Günther, 1996. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11: 899–904.

    Article  CAS  Google Scholar 

  • Maillet, G. L. & J. D. M. Checkley, 1990. Effects of starvation on the frequency of formation and width of growth increments in sagittae of laboratory-reared Atlantic menhaden Brevoortia tyrannus larvae. Fishery Bulletin US 88: 155–165.

    Google Scholar 

  • McCulloch, M., M. Cappo, J. Aumend & W. Muller, 2005. Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Marine & Freshwater Research 56: 637–644.

    Article  CAS  Google Scholar 

  • Milton, D. A., I. Halliday, M. Sellin, R. Marsh, J. Staunton-Smith & J. Woodhead, 2008. The effect of habitat and environmental history on otolith chemistry of barramundi Lates calcarifer in estuarine population of a regulated tropical river. Estuarine, Coastal and Shelf Science 78: 301–315.

    Article  Google Scholar 

  • Pannella, G., 1971. Fish otoliths: daily growth layers and periodical patterns. Science 173: 1124–1127.

    Article  Google Scholar 

  • Richardson, C. A., 1988. Exogenous and endogenous rhythms of band formation in the shell of the clam Tapes philippinarum. Journal Experimental Marine Biology and Ecology 122: 105–126.

    Article  Google Scholar 

  • Rooker, J. R., D. H. Secor, V. S. Zdanowicz, G. De Metrio & L. O. Relini, 2003. Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fishery Oceanography 12: 75–84.

    Article  Google Scholar 

  • Sötje, I., F. Neues, M. Epple, W. Ludwig, A. Rack, M. Gordon, R. Boese & H. Tiemann, 2011. Comparison of statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach. Marine Biology 158: 1149–1161.

    Article  Google Scholar 

  • Straehler-Pohl, I. & G. Jarms, 2005. Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation. Marine Biology 147: 1271–1277.

    Article  Google Scholar 

  • Swan, S. C., A. J. Geffen, B. Morales-Nin, J. D. M. Gordon, T. Shimmield, T. Sawyer & E. Massuti, 2006. Otolith chemistry: an aid to stock separation of Helicolenus dactylopterus (bluemouth) and Merluccius merluccius (European hake) in the Northeast Atlantic and Mediterranean. ICES Journal of Marine Science 63: 504–513.

    Article  CAS  Google Scholar 

  • Thorrold, S. R., C. Latkoczy, P. K. Swart & C. M. Jones, 2001. Natal homing in a marine fish metapopulation. Science 291: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Thorrold, S. R., G. P. Jones, M. E. Hellberg, R. S. Burton, S. E. Swearer, J. E. Niegel, S. G. Morgan & R. R. Warner, 2002. Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bulletin Marine Science 70: 291–308.

    Google Scholar 

  • Tibballs, J., 2006. Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon 48: 830–859.

    Article  PubMed  CAS  Google Scholar 

  • Tiemann, H., I. Sötje, A. Becker, G. Jarms & M. Epple, 2006. Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp. Zoologischer Anzeiger 245: 13–17.

    Article  Google Scholar 

  • Ueno, S., C. Imai & A. Mitsutani, 1995. Fine growth rings found in statolith of a cubomedusa Carybdea rastoni. Journal of Plankton Research 17: 1381–1384.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Jamie Seymour and Matt Gordon for providing some archived statolith samples. The authors also thank Yi Hu at Advanced Analytical Centre, James Cook University for assistance with LA-ICPMS analyses, and the reviewers and editors for their help. Financial supports from the Marine and Tropical Science Research Facility and James Cook University are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Mooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mooney, C.J., Kingsford, M.J. (2012). Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry. In: Purcell, J., Mianzan, H., Frost, J.R. (eds) Jellyfish Blooms IV. Developments in Hydrobiology, vol 220. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5316-7_21

Download citation

Publish with us

Policies and ethics