Pulse perturbations from bacterial decomposition of Chrysaoraquinquecirrha (Scyphozoa: Pelagiidae)

  • Jessica R. FrostEmail author
  • Charles A. Jacoby
  • Thomas K. Frazer
  • Andrew R. Zimmerman
Part of the Developments in Hydrobiology book series (DIHY, volume 220)


Bacteria decomposed damaged and moribund Chrysaora quinquecirrha Desor, 1848 releasing a pulse of carbon and nutrients. Tissue decomposed in 5–8 days, with 14 g of wet biomass exhibiting a half-life of 3 days at 22°C, which is 3× longer than previous reports. Decomposition raised mean concentrations of organic carbon and nutrients above controls by 1–2 orders of magnitude. An increase in nitrogen (16,117 μg l−1) occurred 24 h after increases in phosphorus (1,365 μg l−1) and organic carbon (25 mg l−1). Cocci dominated control incubations, with no significant increase in numbers. In incubations of tissue, bacilli increased exponentially after 6 h to become dominant, and cocci reproduced at a rate that was 30% slower. These results, and those from previous studies, suggested that natural assemblages may include bacteria that decompose medusae, as well as bacteria that benefit from the subsequent release of carbon and nutrients. This experiment also indicated that proteins and other nitrogenous compounds are less labile in damaged medusae than in dead or homogenized individuals. Overall, dense patches of decomposing medusae represent an important, but poorly documented, component of the trophic shunt that diverts carbon and nutrients incorporated by gelatinous zooplankton into microbial trophic webs.


Jellyfish Scyphomedusae Bacterial decomposition Carbon Nitrogen Phosphorus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Special thanks go to E. Phlips for providing access to his laboratory and microscope for bacterial counts. Further appreciation goes to C. Brown and personnel in the water chemistry laboratory of the Fisheries and Aquatic Sciences Program for analyzing nutrient concentrations. J. Jin at the Department of Geological Sciences analyzed carbon concentrations. S. Barry, M. Edwards, A. Krzystan, J. Lockwood, and D. Saindon provided valuable support during this study, and the comments of three anonymous reviewers led to significant improvements in the manuscript. This article is a contribution to EUR-OCEANS Network of Excellence (WP4-SYSMS-1101).


  1. Arai, M. N., 1997. A functional biology of Scyphozoa. Chapman and Hall, London: 316 pp.Google Scholar
  2. Arai, M. N., J. A. Ford & J. N. C. Whyte, 1989. Biochemical composition of fed and starved Aequorea victoria (Murbach et Shearer, 1902) (Hydromedusa). Journal of Experimental Marine Biology and Ecology 127: 289–299.CrossRefGoogle Scholar
  3. Bachmann, R. W. & D. E. Canfield Jr., 1996. Use of an alternative method for monitoring total nitrogen concentrations in Florida lakes. Hydrobiologia 323: 1–8.CrossRefGoogle Scholar
  4. Bidle, K. D., M. Manganelli & F. Azam, 2002. Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298: 1980–1984.PubMedCrossRefGoogle Scholar
  5. Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.CrossRefGoogle Scholar
  6. Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–68.CrossRefGoogle Scholar
  7. Condon, R. H., D. K. Steinberg & D. A. Bronk, 2010. Production of dissolved organic matter and inorganic nutrients by gelatinous zooplankton in the York River estuary, Chesapeake Bay. Journal of Plankton Research 32: 153–170.CrossRefGoogle Scholar
  8. Condon, R. H., D. K. Steinberg, P. A. del Giorgio, T. C. Bouvier, D. A. Bronk, W. M. Graham & H. W. Ducklow, 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proceedings of the National Academy of Sciences 108: 10225–10230.CrossRefGoogle Scholar
  9. Doores, S. & T. M. Cook, 1976. Occurrence of Vibrio and other bacteria on the sea nettle, Chrysaora quinquecirrha. Microbial Ecology 3: 31–40.CrossRefGoogle Scholar
  10. Doyle, T. K., J. D. R. Houghton, R. McDevitt, J. Davenport & G. C. Hays, 2007. The energy density of jellyfish: estimates from bomb-calorimetry and proximate-composition. Journal of Experimental Marine Biology and Ecology 242: 239–252.CrossRefGoogle Scholar
  11. Glasby, T. M. & A. J. Underwood, 1996. Sampling to differentiate between pulse and press perturbations. Environmental Monitoring and Assessment 42: 241–252.CrossRefGoogle Scholar
  12. Graham, W. M., 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451: 97–111.CrossRefGoogle Scholar
  13. Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212.CrossRefGoogle Scholar
  14. Hamner, W. M. & M. N. Dawson, 2009. A review and synthesis on the systematic and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616: 161–191.CrossRefGoogle Scholar
  15. Hansson, L. J. & B. Norrman, 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktonic bacteria. Marine Biology 121: 527–532.CrossRefGoogle Scholar
  16. Heeger, T., U. Piatkowski & H. Möller, 1992. Predation on jellyfish by the cephalopod Argonauta argo. Marine Ecology Progress Series 88: 293–296.CrossRefGoogle Scholar
  17. Koppelmann, R. & J. Frost, 2008. The ecological role of zooplankton in the twilight and dark zones of the ocean. In Mertens, L. P. (ed.), Biological Oceanography Research Trends. Nova Science Publishers, Inc., New York: 67–130.Google Scholar
  18. Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.CrossRefGoogle Scholar
  19. Lebrato, M. & D. O. B. Jones, 2009. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnology and Oceanography 54: 1197–1209.CrossRefGoogle Scholar
  20. Lucas, C. H., 1994. Biochemical composition of Aurelia aurita in relation to age and sexual maturity. Journal of Experimental Marine Biology and Ecology 183: 179–192.CrossRefGoogle Scholar
  21. Lucas, C. H., 2009. Biochemical composition of the mesopelagic coronate jellyfish Periphylla periphylla from the Gulf of Mexico. Journal of the Marine Biological Association of the United Kingdom 89: 77–81.CrossRefGoogle Scholar
  22. Malej, A., 1989. Respiration and excretion rates of Pelagia noctiluca (Semaeostomeae, Scyphozoa). In Polish Academy of Sciences (eds), Proceedings of the 21st EMBS. Institute of Oceanology, Gdansk: 107–113.Google Scholar
  23. Malej, A., 1991. Rates of metabolism of jellyfish as related to body weight, chemical composition and temperature. In Proceedings of the II Workshop on Jellyfish in the Mediterranean Sea. UNEP, Athens: 253–259.Google Scholar
  24. Malej, A., V. Turk, D. Lučić & A. Benović, 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology 151: 827–841.CrossRefGoogle Scholar
  25. Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnology and Oceanography 10: 280–282.CrossRefGoogle Scholar
  26. Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science 52: 575–581.CrossRefGoogle Scholar
  27. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.CrossRefGoogle Scholar
  28. Mimura, H. & S. Nagata, 2001. Degradation of water-soluble fraction of jellyfish by a marine bacterium, Brevibacterium sp. JCM 6894. Microbes and Environments 16: 121–123.CrossRefGoogle Scholar
  29. Miyake, H., D. J. Lindsay, J. C. Hunt & T. Hamatsu, 2002. Scyphomedusa Aurelia limbata (Brandt, 1838) found in deep waters off Kushiro, Hokkaido, Northern Japan. Plankton Biology and Ecology 49: 44–46.Google Scholar
  30. Miyake, H., D. J. Lindsay, M. Kitamura & S. Nishida, 2005. Occurrence of the scyphomedusa Parumbrosa polylobata Kishinouye, 1910 in Suruga Bay, Japan. Plankton Biology and Ecology 52: 58–66.Google Scholar
  31. Morand, P., C. Carré & D. C. Biggs, 1987. Feeding and metabolism of the jellyfish Pelagia noctiluca (scyphomedusae, semaeostomeae). Journal of Plankton Research 9: 651–665.CrossRefGoogle Scholar
  32. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  33. Murty, S. J., B. J. Bett & A. J. Gooday, 2009. Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea. Deep-Sea Research II 56: 472–487.CrossRefGoogle Scholar
  34. Nemazie, D. A., J. E. Purcell & P. M. Gilbert, 1993. Ammonium excretion by gelatinous zooplankton and their contribution to the ammonium requirements of microplankton in Chesapeake Bay. Marine Biology 116: 451–458.CrossRefGoogle Scholar
  35. Pitt, K. A., K. Koop & D. Rissik, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). Journal of Experimental Marine Biology and Ecology 315: 71–86.CrossRefGoogle Scholar
  36. Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616: 133–149.CrossRefGoogle Scholar
  37. Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates, and effects on prey populations. Annales de l’Institut Oceanographique, Paris 73: 125–137.Google Scholar
  38. Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.CrossRefGoogle Scholar
  39. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44.CrossRefGoogle Scholar
  40. Purcell, J. E. & M. B. Decker, 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnology and Oceanography 50: 376–387.CrossRefGoogle Scholar
  41. Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution 24: 312–322.PubMedCrossRefGoogle Scholar
  42. Riemann, L., J. Titelman & U. Båmstedt, 2006. Links between jellyfish and microbes in a jellyfish dominated fjord. Marine Ecology Progress Series 325: 29–42.CrossRefGoogle Scholar
  43. Schneider, G., 1988. Chemische zusammensetzung und biomasseparameter der ohrenqualle Aurelia aurita. Helgoländer Meeresuntersuchungen 42: 319–327.CrossRefGoogle Scholar
  44. Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, Western Baltic. Marine Biology 100: 507–514.CrossRefGoogle Scholar
  45. Sexton, M. A., R. R. Hood, J. Sarkodee-adoo & A. M. Liss, 2010. Response of Chrysaora quinquecirrha medusae to low temperature. Hydrobiologia 645: 125–133.CrossRefGoogle Scholar
  46. Shimauchi, H. & S. Uye, 2007. Excretion and respiration rates of the scyphomedusa Aurelia aurita from the Inland Sea of Japan. Journal of Oceanography 63: 27–34.CrossRefGoogle Scholar
  47. Tinta, T., A. Malej, M. Kos & V. Turk, 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. Hydrobiologia 645: 179–191.CrossRefGoogle Scholar
  48. Titelman, J., L. Riemann, T. A. Sørnes, T. Nilsen, P. Griekspoor & U. Båmstedt, 2006. Turnover of dead jellyfish: stimulation and retardation of microbial activity. Marine Ecology Progress Series 325: 43–58.CrossRefGoogle Scholar
  49. West, E. J., D. T. Welsh & K. A. Pitt, 2009. Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia 616: 151–160.CrossRefGoogle Scholar
  50. Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamotoa, T. Shimura, N. Honda, Y. Fujimori & T. Mukai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jessica R. Frost
    • 1
    • 2
    Email author
  • Charles A. Jacoby
    • 3
  • Thomas K. Frazer
    • 4
  • Andrew R. Zimmerman
    • 5
  1. 1.Institute for Hydrobiology and Fisheries ScienceUniversity of HamburgHamburgGermany
  2. 2.Fisheries and Aquatic Science Program, School of Forest Resources and Conservation, University of FloridaGainesvilleUSA
  3. 3.Department of Soil and Water ScienceUniversity of FloridaGainesvilleUSA
  4. 4.Fisheries and Aquatic Science Program, School of Forest Resources and Conservation, University of FloridaGainesvilleUSA
  5. 5.Department of Geological SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations