Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea

  • Jennifer E. PurcellEmail author
  • Dacha Atienza
  • Verónica Fuentes
  • Alejandro Olariaga
  • Uxue Tilves
  • Chandler Colahan
  • Josep-María Gili
Part of the Developments in Hydrobiology book series (DIHY, volume 220)


In recent decades, many areas worldwide have experienced mass occurrences of jellyfish. To determine how temperature may affect jellyfish populations in the northwest (NW) Mediterranean Sea, we maintained polyps of three scyphozoan species, Aurelia aurita, Rhizostoma pulmo, and Cotylorhiza tuberculata in the laboratory at three temperatures (14, 21, 28°C) to test effects on survival and production of new polyps and ephyrae. Temperature significantly affected survival of all species, with longest survival of A. aurita and R. pulmo at 14°C and of C. tuberculata at 21°C. More polyps were budded by all species at temperatures above 14°C. A. aurita produced the most buds polyp−1 (43.5) and R. pulmo the fewest (8.8). Strobilation occurred only at 14°C for A. aurita and at 21°C for C. tuberculata. For R. pulmo, fewer polyps strobilated and strobilated later at 14°C. These patterns of survival and asexual reproduction were seasonally appropriate for each species in the NW Mediterranean, where A. aurita medusae occur earliest (~April–May) in cool waters, followed by R. pulmo during May–June, and then by C. tuberculata in mid-summer. Comparisons among scyphozoan species suggested that many may be restricted by low temperatures, and that global warming may benefit temperate species, but not tropical or boreal species.


Global warming Temperature Jellyfish Zooplankton Bloom Climate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Catalan Water Agency (ACA) for funding the Medusa Project, Miriam Gentile for maintaining the jellyfish cultures, and reviewers for their helpful suggestions.


  1. Alley, R. et al., 2007. Climate change 2007: the physical science basis, summary for policymakers: contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Accessed on 2 Apr 2007.
  2. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London.Google Scholar
  3. Astorga, D., J. Ruiz & L. Prieto, 2012. Ecological aspects of early life stages of Cotylorhiza tuberculata (Cnidaria: Scyphozoa) affecting its pelagic population success. Hydrobiologia. doi: 10.1007/s10750-012-1036-x.
  4. Boero, F., J. Bouillon, S. Piraino & V. Schmid, 2002. Asexual reproduction in the Hydrozoa (Cnidaria). In Hughes, R. N. (ed.), Reproductive Biology of Invertebrates XI: Progress in Asexual Reproduction. Oxford and IBH Publishing Company, New Delhi: 141–158.Google Scholar
  5. Brodeur, R. D., M. B. Decker, L. Ciannelli, J. E. Purcell, N. A. Bond, P. J. Stabeno, G. L. Hunt Jr & E. Acuna, 2008. Rise and fall of jellyfish in the Bering Sea in relation to climate regime shifts. Progress in Oceanography 77: 103–111.CrossRefGoogle Scholar
  6. Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13: 486–491.CrossRefGoogle Scholar
  7. Chen, J. K., B. W. Ding & C. Y. Liu, 1985. Effect of nutritional conditions on the strobilation of edible medusa, Rhopilema esculenta Kishinouye. Shuichan Xuebao (Journal of Fisheries China) 9: 321–329.Google Scholar
  8. Dawson, M. N., L. E. Martin & L. K. Penland, 2001. Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451: 131–144.CrossRefGoogle Scholar
  9. Fuentes, V., I. Straehler-Pohl, D. Atienza, I. Franco, U. Tilves, M. Gentile, M. Acevedo, A. Olariaga & J. -M. Gili, 2011. Life cycle of the jellyfish Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution, seasonality and inter-annual variability along the Catalan coast and the Mar Menor (Spain, NW Mediterranean). Marine Biology 158: 2247–2266.Google Scholar
  10. Goy, J., P. Morand & M. Etienne, 1989. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep-Sea Research 36: 269–279.CrossRefGoogle Scholar
  11. Han, C.-H. & S.-I. Uye, 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton and Benthos Research 5: 98–105.CrossRefGoogle Scholar
  12. Holst, S., 2012. Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia. doi: 10.1007/s10750-012-1043-y.
  13. Ishii, H. & T. Watanabe, 2003. Experimental study of growth and asexual reproduction in Aurelia aurita polyps. Sessile Organisms 20: 69–73.CrossRefGoogle Scholar
  14. Kawahara, M., S.-i. Uye, K. Ohtsu & H. Iizumi, 2006. Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Marine Ecology Progress Series 307: 161–173.CrossRefGoogle Scholar
  15. Kogovšek, T., B. Bogunović & A. Malej, 2010. Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645: 81–96.CrossRefGoogle Scholar
  16. Licandro, P., D. V. P. Conway, M. N. Daly Yahia, M. L. Fernandez de Puelles, S. Gasparini, J. H. Hecq, P. Tranter, et al., 2010. A blooming jellyfish in the northeast Atlantic and Mediterranean. Biology Letters 6: 688–691.PubMedCrossRefGoogle Scholar
  17. Liu, W.-C., W.-T. Lo, J. E. Purcell & H.-H. Chang, 2009. Effects of temperature and light intensity on asexual reproduction of the Scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616: 247–258.CrossRefGoogle Scholar
  18. Lotan, A., M. Fine & R. Ben-Hillel, 1994. Synchronization of the life cycle and dispersal pattern of the tropical invader scyphomedusan Rhopilema nomadica is temperature dependent. Marine Ecology Progress Series 109: 59–65.CrossRefGoogle Scholar
  19. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.CrossRefGoogle Scholar
  20. Lynam, C. P., M. J. Attrill & M. D. Skogen, 2010. Climatic and oceanic influences on the abundance of gelatinous zooplankton in the North Sea. Journal of the Marine Biological Association of the United Kingdom 90: 1153–1159.CrossRefGoogle Scholar
  21. Lynam, C. P., M. K. S. Lilley, T. Bastian, T. K. Doyle, S. E. Beggs & G. C. Hays, 2011. Have jellyfish in the Irish sea benefited from climate change and overfishing? Global Change Biology 17: 767–782.CrossRefGoogle Scholar
  22. Ma, X. & J. E. Purcell, 2005. Temperature, salinity and prey effects on polyp versus medusa bud production of the invasive hydrozoan, Moerisia lyonsi. Marine Biology 147: 225–234.CrossRefGoogle Scholar
  23. Malej, A. & A. Malej Jr, 2004. Invasion of the jellyfish Pelagia noctiluca in the Northern Adriatic: a non-success story. In Dumont, H., et al. (eds), Aquatic Invasions in the Black, Caspian, and Mediterranean Seas. Kluwer Academic Publishers, Dordrecht: 273–285.CrossRefGoogle Scholar
  24. Mariottini, G. L. & L. Pane, 2010. Mediterranean jellyfish venoms: a review on Scyphomedusae. Marine Drugs 8: 1122–1152.PubMedCrossRefGoogle Scholar
  25. Molinero, J. C., F. Ibanez, P. Nival, E. Buecher & S. Souissi, 2005. North Atlantic climate and northwestern Mediterranean plankton variability. Limnology and Oceanography 50: 1213–1220.CrossRefGoogle Scholar
  26. Molinero, J. C., M. Casini & E. Buecher, 2008. The influence of the Atlantic and regional climate variability on the long-term changes in gelatinous carnivore populations in the northwestern Mediterranean. Limnology and Oceanography 53: 1456–1467.CrossRefGoogle Scholar
  27. Pagés, F., 2001. Past and present anthropogenic factors promoting the invasion, colonization and dominance by jellyfish of a Spanish coastal lagoon. In Briand, F. (ed.), Gelatinous Zooplankton Outbreaks: Theory and Practice. CIESM Workshop Series 14, Monaco: 69–71.Google Scholar
  28. Papathanassiou, E., P. Panayotidis & K. Anagnostaki, 1987. Notes on the biology and ecology of the jellyfish Aurelia aurita Lam. in Elefsis Bay (Saronikos Gulf, Greece). PSZNI Marine Ecology 8: 49–58.CrossRefGoogle Scholar
  29. Pitt, K. A., 2000. Life history and settlement preferences of the edible jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Marine Biology 136: 269–280.Google Scholar
  30. Prieto, L., D. Astorga, G. Navarro & J. Ruiz, 2010. Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS ONE 5(11): e13793. doi: 10.1371/journal.pone.0013793.
  31. Purcell, J. E., 2005. Climate effects on jellyfish populations. Journal of the Marine Biological Association United Kingdom 85: 461–476.CrossRefGoogle Scholar
  32. Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the Scyphozoan, Aurelia labiata. Marine Ecology Progress Series 348: 183–196.CrossRefGoogle Scholar
  33. Purcell, J. E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4: 209–235.Google Scholar
  34. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the Scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.CrossRefGoogle Scholar
  35. Purcell, J. E., S.-I. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  36. Purcell, J. E., R. A. Hoover & N. T. Schwarck, 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series 375: 139–149.CrossRefGoogle Scholar
  37. Rahat, M. & O. Adar, 1980. Effect of symbiotic zooxanthellae and temperature on budding and strobilation of Cassiopeia andromeda (Eschscholz). Biological Bulletin 159: 394–401.CrossRefGoogle Scholar
  38. Sabatés, A., P. Martín, J. Lloret & V. Raya, 2006. Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Global Change Biology 12: 2209–2219.CrossRefGoogle Scholar
  39. Salat, J. & J. Pascual, 2002. The oceanographic and meteorological station at L’Estartit (NW Mediterranean). Tracking long-term hydrological change in the Mediterranean sea. CIESM Workshop Series 16: 29–32.Google Scholar
  40. Spangenberg, D. B., 1968. Recent studies of strobilation in jellyfish. Oceanography and Marine Biology Annual Reviews 6: 231–247.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jennifer E. Purcell
    • 1
    Email author
  • Dacha Atienza
    • 2
  • Verónica Fuentes
    • 2
  • Alejandro Olariaga
    • 2
  • Uxue Tilves
    • 2
  • Chandler Colahan
    • 1
  • Josep-María Gili
    • 2
  1. 1.Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA
  2. 2.Institut de Ciencies del Mar, CSICBarcelonaSpain

Personalised recommendations