Advertisement

The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters

  • Htun Thein
  • Hideki Ikeda
  • Shin-ichi UyeEmail author
JELLYFISH BLOOMS
  • 667 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 220)

Abstract

Common moon jellyfish, Aurelia spp. bloom seasonally in eutrophic or polluted coastal waters around the world. We hypothesized that podocysts, a part of asexual reproduction of the benthic polyps, were important in perpetuating populations of Aurelia aurita s.l. in anthropogenically perturbed waters. We examined the effects of temperature, salinity, dissolved oxygen concentrations, and food on the encystment and excystment of A. aurita podocysts. Podocysts were formed only by unfed or poorly-fed polyps (≤4.8 μg C polyp−1 day−1), indicating that starvation was the primary cause of encystment, while increased temperatures accelerated podocyst production rate. Encystment was never induced by changed salinity (15–32) or dissolved oxygen concentration (1–5 mg O2 l−1). Excystment occurred only when podocysts were returned to 19°C from 28°C and to oxic waters from hypoxic (0.2–1.0 mg O2 l−1). The podocysts were capable of surviving for up to 3.2 year. Histology revealed that newly-formed podocysts contained rich organic reserves (e.g., carbohydrate, protein, and lipid) that were gradually consumed while encysted. Podocysts may contribute minimally to increasing A. aurita polyp abundance, but they can insure maintenance of the population in adverse environmental conditions and in predator attacks. Podocysts may also enable the population to extend to areas where polyp survival is marginal.

Keywords

Temperature Salinity Predation Starvation Dissolved oxygen Dormant stage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Masato Kawahara and Chang-Hoon Han for their help with the experiments. English of the early manuscript was edited by the Sea Pen Scientific Writing, LLC. This work was partially supported by a research grant from the Agriculture, Forestry and Fisheries Research Council (POMAL-STOPJELLY Project).

Supplementary material

978-94-007-5316-7_12_MOESM1_ESM.jpg (499 kb)
Photomicrograph of 1-month-old Aurelia aurita s.l. podocysts stained with Haematoxylin-eosin method. (A) Cross section. (B) Magnified view of nucleus. (C) Cnidoblasts in cell mass. c, cuticle; cm, cell mass; gra, granules; nu, nucleus; cni, cnidoblast. Scale bars = 50 μm (A) and 10 μm (B, C) (JPG 499 kb)
978-94-007-5316-7_12_MOESM2_ESM.jpg (775 kb)
Appendix 2 Photomicrograph of 1-month-old Aurelia aurita s.l. podocysts showing chemical contents. (A) Carbohydrates stained purple with periodic acid Schiff method. (B) Basic proteins stained red with solochrome cyanin. (C) Acidic mucopolysaccharides stained blue in the cnidoblast with alcian blue. (D) Nuclei containing DNA stained positive with methyl green. Staining of the cnidoblasts is false. (E) Lipids stained black with Sudan black technique. c, cuticle; m, mucoid layer; gra, granules; cni, cnidoblast; nu, nucleus; lip, lipid. Scale bars = 30 μm (A, B) and 10 μm (C, D, E) (JPG 776 kb)
978-94-007-5316-7_12_MOESM3_ESM.tif (1.3 mb)
Appendix 3 Photomicrograph of cross sections of Aurelia aurita s.l. podocysts of different ages. (A) Newly formed. (B) 1-month-old. (C) 3-months-old. (D) 4-months-old. (E) 6-months-old. (F) 12-months-old. Scale bars = 100 μm (TIFF 1357 kb)

References

  1. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, New York: 316 pp.Google Scholar
  2. Arai, M. N., 2009. The potential importance of podocysts to the formation of scyphozoan blooms: a review. Hydrobiologia 616: 241–246.CrossRefGoogle Scholar
  3. Black, R. E., 1981. Metabolism and ultrastructure of dormant podocysts of Chrysaora quinquecirrha (Scyphozoa). Journal of Experimental Zoology 218: 175–182.CrossRefGoogle Scholar
  4. Blanquet, R. S., 1972. Structure and chemical aspects of the podocyst cuticle of the scyphozoan medusa, Chrysaora quinquecirrha. Biological Bulletin 142: 1–10.CrossRefGoogle Scholar
  5. Brewer, R. H. & J. S. Feingold, 1991. The effect of temperature on the benthic stages of Cyanea (Cnidaria: Scyphozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. Journal of Experimental Marine Biology and Ecology 152: 49–60.CrossRefGoogle Scholar
  6. Cargo, D. G., 1974. Comments on the laboratory culture of Scyphozoa. In Smith, W. L. & M. H. Chanley (eds), Culture of Marine Invertebrate Animals. Plenum Publishing Corporation, New York: 145–154.Google Scholar
  7. Cargo, D. G. & G. E. Rabenold, 1980. Observations on the asexual reproductive activities of the sessile stages of the sea nettle Chrysaora quinquecirrha (scyphozoan). Estuaries 3: 20–27.CrossRefGoogle Scholar
  8. Cargo, D. G. & L. P. Schultz, 1966. Notes on the biology of sea nettle, Chrysaora quinquecirrha, in Chesapeake Bay. Chesapeake Science 7: 95–100.CrossRefGoogle Scholar
  9. Cargo, D. G. & L. P. Schultz, 1967. Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Science 8: 209–220.CrossRefGoogle Scholar
  10. Chapman, D. M., 1968. Structure, histochemistry and formation of the podocyst and cuticle of Aurelia aurita. Journal of the Marine Biological Association of the United Kingdom 48: 187–208.CrossRefGoogle Scholar
  11. Condon, R. H., M. B. Decker & J. E. Purcell, 2001. Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquerirrha). Hydrobiologia 451: 89–95.CrossRefGoogle Scholar
  12. Coyne, J. A., 1973. An investigation of the dynamics of population growth and control in scyphistomae of the scyphozoan Aurelia aurita. Chesapeake Science 14: 55–58.CrossRefGoogle Scholar
  13. Dawson, M. N., 2003. Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Marine Biology 143: 369–379.CrossRefGoogle Scholar
  14. Dawson, M. N. & L. E. Martin, 2001. Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451: 259–273.CrossRefGoogle Scholar
  15. Dong, Z., D. Liu & K. K. John, 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin 60: 954–963.PubMedCrossRefGoogle Scholar
  16. Graham, W. M., 2001. Numerical increase and distribution shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linne) (Cnidaria: Scyphozoa) in northern Gulf of Mexico. Hydrobiologia 451: 97–111.CrossRefGoogle Scholar
  17. Gröndahl, F., 1988. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982–1986. Marine Biology 97: 541–550.CrossRefGoogle Scholar
  18. Gröndahl, F. & L. Hernroth, 1987. Release and growth of Cyanea capillata (L.) ephyrae in the Gullmar Fjord, western Sweden. Journal of Experimental Marine Biology and Ecology 106: 91–101.CrossRefGoogle Scholar
  19. Han, C. H. & S. Uye, 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton Benthos Research 5: 98–105.CrossRefGoogle Scholar
  20. Han, C. H., M. Kawahara & S. Uye, 2009. Seasonal variations in the trophic relationship between scyphomedusa Aurelia aurita s.l. and mesozooplankton in a eutrophic brackish-water lake. Japan. Plankton and Benthos Research 4: 14–22.CrossRefGoogle Scholar
  21. Hérnroth, L. & F. Gröndahl, 1985. On the biology of Aurelia aurita (L.): 3. Predation by Coryphella verrucosa (Gastropoda, Opisthobranchia), a major factor regulating the development of Aurelia populations in the Gullmar Fjord, western Sweden. Ophelia 24: 37–45.CrossRefGoogle Scholar
  22. Hérouard, E., 1907. Existence de statoblasts chez le scyphistome. Comptes Rendus Hebdomadaires des Seances de l Academie des Sciences, Paris 145: 601–603 (from Chapman, D. M., 1968).Google Scholar
  23. Hérouard, E., 1911. Sur la progenèse parthénogénésique à longue échéance de Chrysaora. Comptes Rendus Hebdomadaires des Seances de l Academie des Sciences, Paris 153: 1094–1095 (from Chapman, D. M., 1968).Google Scholar
  24. Hérouard, E., 1912a. Histoire du kyste pédieux de Chrysaora et sa signification. Archives of Zoological Experimental Genetics 10: 11–25 (from Chapman, D. M., 1968).Google Scholar
  25. Hérouard, E., 1912b. Préparations concernant la formation du kyste pédieux de Chrysaora. Bulletin of the Zoological Society of France 37: 44–45 (from Chapman, D. M., 1968).Google Scholar
  26. Hyde, I. H., 1894. Entwicklungsgeschichte einiger Scyphomedusen. Zeitschrift Fur Wissenschaftliche Zoologie 58: 531–565 (from Chapman, D. M., 1968).Google Scholar
  27. Ishii, H., 2001. The influence of environmental changes upon the coastal plankton ecosystems, with special reference to mass occurrence of jellyfish. Bulletin of the Plankton Society of Japan 48: 55–61 (in Japanese with English abstract).Google Scholar
  28. Ishii, H. & F. Tanaka, 2001. Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion time. Hydrobiologia 451: 311–320.CrossRefGoogle Scholar
  29. Ishii, H. & T. Watanabe, 2003. Experimental study of growth and asexual reproduction in Aurelia aurita polyps. Sessile Organisms 20: 69–73.CrossRefGoogle Scholar
  30. Ishii, H., T. Ohba & T. Kobayashi, 2008. Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankton Benthos Research 3: 107–113.CrossRefGoogle Scholar
  31. Kakinuma, Y., 1962. On some factors for the differentiations of Cladonema uchidai and of Aurelia aurita. Bulletin Marine Biological Station of Asamushi 11: 81–85.Google Scholar
  32. Ki, J. S., D. S. Hwang, K. Shin, W. D. Yoon, D. Lim, Y. S. Kang, Y. Lee & J. S. Lee, 2008. Recent moon jelly (Aurelia sp.) blooms. I. Korean coastal waters suggest global expansion: examples inferred from mitochondrial COI and nuclear ITS-5.85 rDNA sequences. ICES Journal of Marine Science 65: 443–452.CrossRefGoogle Scholar
  33. Kuwabara, R., S. Sato & N. Noguchi, 1969. Ecological studies on the medusa, Aurelia aurita. 1. Distribution of Aurelia patches in the north-eastern region of Tokyo Bay in summer of 1966 and 1967. Bulletin of the Japanese Society of Fisheries Oceanography 35: 156–162 (In Japanese with English abstract).CrossRefGoogle Scholar
  34. Lee, J. H., H. W. Choi, J. Chae, D. S. Kim & S. B. Lee, 2006. Performance analysis of intake screens in power plants on mass impingement of marine organisms. Ocean Polar Research 28: 385–393.CrossRefGoogle Scholar
  35. Liu, W. C., W. T. Lo, J. E. Purcell & H. H. Chang, 2009. Effects of temperature and light intensity on asexual reproduction of the scyphozoan Aurelia aurita (L.) in Taiwan. Hydrobiologia 616: 247–258.CrossRefGoogle Scholar
  36. Lu, N., S. Jiang & J. Chen, 1997. Effect of temperature, salinity and light on the podocyst generation of Rhopilema esculenta Kishnouye. Fisheries Science 16: 3–8 (Chinese with English abstract).Google Scholar
  37. Lucus, H. L., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.CrossRefGoogle Scholar
  38. McGee-Russell, S. M. & N. B. Smale, 1963. On colouring epon-embedded tissue sections with Sudan black B or Nile blue A for light microscopy. Journal of Microscopical Science 104: 109–115.Google Scholar
  39. Miyake, Y., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. Journal of Oceanography 58: 451–459.CrossRefGoogle Scholar
  40. Omori, M., H. Ishii & A. Fujinaga, 1995. Life history strategy of Aurelia aurita (Cnidaria, Scyphomedusae) and its impact on the zooplankton community of Tokyo bay. ICES Journal of Marine Science 52: 597–603.CrossRefGoogle Scholar
  41. Purcell, J. E., 2007. Environmental factors on asexual reproduction rates of the scyphozoan Aurelia labiata. Marine Ecology Progress Series 348: 183–196.CrossRefGoogle Scholar
  42. Purcell, J. E., D. Atienza, V. Fuentes, A. Olariaga, U. Tilves, C. Colahan & J.-M. Gili, submitted. Temperature effects on asexual reproduction rates of scyphozoan polyps from the NW Mediterranean Sea. Hydrobiologia. doi: 10.1007/s10750-012-1047-7.
  43. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology and Progress Series 180: 187–196.CrossRefGoogle Scholar
  44. Purcell, J. E., S. Uye & W. T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequence for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  45. Purcell, J. E., R. A. Hoover & N. T. Schwarck, 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series 375: 139–149.CrossRefGoogle Scholar
  46. Tchéou-Tai-Chuin, 1930. Le cycle evolutif du scyphistome de Chrysaora. Travel Station Biology, Roscoff 8: 1–179 (from Chapman, D. M., 1968).Google Scholar
  47. Thiel, H., 1962. Untersuchungen über die Strobilisation von Aurelia aurita Lam. an einer Population der Kieler Förde. Kieler Meeresforschungen 18: 198–230 (from Brewer, R. H. & J. S. Feingold, 1991).Google Scholar
  48. Unoki, S. & M. Kishino, 1977. Average ocean condition and water exchange in Tokyo Bay, Vol. 1. Technical Reports of Physical Oceanography Laboratory, Institute of Physics and Chemistry Research: 1–89 (in Japanese)Google Scholar
  49. Uye, S. & T. Shimauchi, 2005. Population biomass, feeding, respiration and growth rates, ad carbon budget of the scyphomedusae Aurelia aurita in the Inland Sea of Japan. Journal of Plankton Research 27: 237–248.CrossRefGoogle Scholar
  50. Uye, S. & Y. Ueta, 2004. Recent increase of jellyfish populations and their nuisance to fisheries in the Inland Sea of Japan. Bulletin of the Japanese Society of Fisheries Oceanography 68: 9–19 (In Japanese with English abstract).Google Scholar
  51. Uye, S., N. Fujii & H. Takeoka, 2003. Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan. Plankton Biology and Ecology 50: 17–21.Google Scholar
  52. Wada, T., H. Miyake, H. Suzuki, K. Suzuki & Y. Takeoka, 1993. An improved method for light microscopy using extraction techniques of Spurr’s resin sections. Japanese Journal of Crop Science 62: 128–129 (in Japanese).CrossRefGoogle Scholar
  53. Willcox, S., N. A. Moltschaniwskyj & C. Crawford, 2007. Asexual reproduction in scyphistoma of Aurelia sp.: effects of temperature and salinity in an experimental study. Journal of Experimental Marine Biology and Ecology 353: 107–114.CrossRefGoogle Scholar
  54. Yamamuro, M., J. Hiratuska & Y. Ishitobi, 2000. Seasonal change in filter-feeding bivalve Musculista senhousia population of a eutrophic estuarine lagoon. Journal of Marine Systems 26: 117–126.CrossRefGoogle Scholar
  55. Yasuda, T., 1983. Studies on the common jellyfish Aurelia aurita (Linne). Japan Fisheries Resource Conservation Association, Tokyo: 189 pp. (in Japanese with English abstract).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Graduate School of Biosphere ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations