Skip to main content

Photonic-Crystal Fiber Platform for Ultrafast Optical Science

  • Conference paper
  • First Online:
Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale

Abstract

The latest breakthroughs in photonic-crystal-fiber (PCF) technologies open new horizons in photonics and optical science. The frequency profile of dispersion and the spatial profile of electromagnetic field distribution in waveguide modes of microstructure fibers can be tailored by modifying the core and cladding design on a micro- and nanoscale, suggesting the ways of creating novel fiber-optic components and devices. Recently developed new types of PCFs provide highly efficient spectral and temporal transformation of laser pulses with pulse widths ranging from tens of nanoseconds to a few optical cycles (several femtoseconds) within a broad range of peak powers from hundreds of watts to several gigawatts. Enhanced nonlinear-optical processes in waveguide modes of these novel optical fibers will offer unique opportunities for ultrafast optical science and lightwave technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell PSJ (2003) Photonic crystal fibers. Science 299:358–362

    Article  ADS  Google Scholar 

  2. Knight JC (2003) Photonic crystal fibers. Nature 424:847–851

    Article  ADS  Google Scholar 

  3. Zheltikov AM (2000) Holey fibers. Phys Uspekhi 43:1125–1136

    Article  ADS  Google Scholar 

  4. Akimov DA, Serebryannikov EE, Zheltikov AM, Schmitt M, Maksimenka R, Kiefer W, Dukel’skii KV, Shevandin VS, Kondrat’ev YN (2003) Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber. Opt Lett 28:1948–1950

    Article  ADS  Google Scholar 

  5. Zheltikov AM (2006) Nanoscale nonlinear optics in photonic-crystal fibres. J Opt A Pure Appl Opt 8:S47–S72

    Article  ADS  Google Scholar 

  6. Serebryannikov EE, Fedotov AB, Zheltikov AM, Ivanov AA, Alfimov MV, Beloglazov VI, Skibina NB, Skryabin DV, Yulin AV, Knight JC (2006) Third-harmonic generation by Raman-shifted solitons in a photonic-crystal fiber. J Opt Soc Am B 23:1975–1980

    Article  ADS  Google Scholar 

  7. Reeves WH, Skryabin DV, Biancalana F, Knight JC, Russell PSJ, Omenetto FG, Efimov A, Taylor AJ (2003) Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature 424:511–515

    Article  ADS  Google Scholar 

  8. Serebryannikov EE, Zheltikov AM (2006) Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis. J Opt Soc Am B 23:1700–1707

    Article  ADS  Google Scholar 

  9. Jones DJ, Diddams SA, Ranka JK, Stentz A, Windeler RS, Hall JL, Cundiff ST (2000) Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288:635–639

    Article  ADS  Google Scholar 

  10. Udem T, Holzwarth R, Hänsch TW (2002) Optical frequency metrology. Nature 416:233–237

    Article  ADS  Google Scholar 

  11. Zheltikov AM (2005) The friendly gas phase. Nature Mater 4:265–267

    Article  ADS  Google Scholar 

  12. Zheltikov AM (2007) Photonic-crystal fibers for a new generation of light sources and frequency converters. Phys Uspekhi 50:705–727

    Article  ADS  Google Scholar 

  13. Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Opt Lett 26:608–610

    Article  ADS  Google Scholar 

  14. Rarity J, Fulconis J, Duligall J, Wadsworth W, Russell P (2005) Photonic crystal fiber source of correlated photon pairs. Opt Expr 13:534–544

    Article  ADS  Google Scholar 

  15. Sidorov-Biryukov DA, Serebryannikov EE, Zheltikov AM (2006) Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic-crystal fiber. Opt Lett 31:2323–2325

    Article  ADS  Google Scholar 

  16. Ivanov AA, Podshivalov AA, Zheltikov AM (2006) Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Raman scattering microspectroscopy. Opt Lett 31:3318–3320

    Article  ADS  Google Scholar 

  17. Ivanov AA, Alfimov MV, Zheltikov AM (2006) Wavelength-tunable ultrashort-pulse output of a photonic-crystal fiber designed to resolve ultrafast molecular dynamics. Opt Lett 31:3330–3332

    Article  ADS  Google Scholar 

  18. Paulsen HN, Hilligsøe KM, Thøgersen J, Keiding SR, Larsen JJ (2003) Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt Lett 28:1123–1125

    Article  ADS  Google Scholar 

  19. Doronina LV, Fedotov IV, Voronin AA, Ivashkina OI, Zots MA, Anokhin KV, Rostova E, Fedotov AB, Zheltikov AM (2009) Tailoring the soliton output of a photonic crystal fiber for enhanced two-photon excited luminescence response from fluorescent protein biomarkers and neuron activity reporters. Opt Lett 34:3373–3375

    Article  ADS  Google Scholar 

  20. Doronina-Amitonova LV, Fedotov IV, Ivashkina OI, Zots MA, Fedotov AB, Anokhin KV, Zheltikov AM (2011) Photonic-crystal-fiber platform for multicolor multilabel neurophotonic studies. Appl Phys Lett 98:253706

    Article  ADS  Google Scholar 

  21. Doronina-Amitonova LV, Fedotov IV, Ivashkina OI, Zots MA, Fedotov AB, Anokhin KV, Zheltikov AM (2010) Fiber-optic probes for in vivo depth-resolved neuron-activity mapping. J Biophoton 3:660–669

    Article  Google Scholar 

  22. Russell PSJ (1006) Photonic-crystal fibers. J Lightwave Technol 24:4729–4749

    Article  Google Scholar 

  23. Fedotov AB, Zheltikov AM, Tarasevitch AP, von der Linde D (2001) Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers. Appl Phys B 73:181–184

    Article  ADS  Google Scholar 

  24. Ranka JK, Windeler RS, Stentz AJ (2000) Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 25:25–27

    Article  ADS  Google Scholar 

  25. Zheltikov AM (2006) Let there be white light: supercontinuum generation by ultrashort laser pulses. Phys Uspekhi 49:605–628

    Article  ADS  Google Scholar 

  26. Dudley JM, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1176

    Article  ADS  Google Scholar 

  27. Limpert J, Roser F, Schreiber T, Tunnermann A (2006) High-power ultrafast fiber laser systems. IEEE J Sel Top Quantum Electron 12:233–244

    Article  Google Scholar 

  28. Fang X-H, Hu M-L, Liu B-W, Chai L, Wang C-Y, Zheltikov AM (2010) Generation of 150-MW, 110-fs pulses by phase-locked amplification in multicore photonic crystal fiber. Opt Lett 35:2326–2328

    Article  ADS  Google Scholar 

  29. Liu H, Hu M, Liu B, Song Y, Chai L, Zheltikov AM, Wang C (2010) Compact high-power multiwavelength photonic-crystal-fiber-based laser source of femtosecond pulses in the infrared–visible–ultraviolet range. J Opt Soc Am B 27:2284–2289

    Article  ADS  Google Scholar 

  30. Südmeyer T, Brunner F, Innerhofer E, Paschotta R, Furusawa K, Baggett JC, Monro TM, Richardson DJ, Keller U (2003) Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Opt Lett 28:1951–1953

    Article  ADS  Google Scholar 

  31. Flusberg BA, Jung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274

    Article  ADS  Google Scholar 

  32. Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RPJ, Ko TH, Burns LD, Jung JC, Schnitzer MJ (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5:935–938

    Article  Google Scholar 

  33. Monro TM, Belardi W, Furusawa K, Baggett JC, Broderick NGR, Richardson DJ (2001) Sensing with microstructured optical fibres. Meas Sci Technol 12:854–858

    Article  ADS  Google Scholar 

  34. Jensen JB, Pedersen LH, Hoiby PE, Nielsen LB, Hansen TP, Folkenberg JR, Riishede J, Noordegraaf D, Nielsen K, Carlsen A, Bjarklev A (2004) Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt Lett 29:1974–1976

    Article  ADS  Google Scholar 

  35. Konorov S, Zheltikov A, Scalora M (2005) Photonic-crystal fiber as a multifunctional optical sensor and sample collector. Opt Expr 13:3454–3459

    Article  ADS  Google Scholar 

  36. Konorov SO, Akimov DA, Serebryannikov EE, Ivanov AA, Alfimov MV, Zheltikov AM (2004) Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers. Phys Rev E 70:057601

    Article  ADS  Google Scholar 

  37. Kano H, Hamaguchi H (2003) Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy. Opt Lett 28:2360–2362

    Article  ADS  Google Scholar 

  38. Kano H, Hamaguchi H (2005) Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy. Opt Expr 13:1322–1327

    Article  ADS  Google Scholar 

  39. Andresen ER, Paulsen HN, Birkedal V, Thøgersen J, Keiding SR (2005) Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers. J Opt Soc Am B 22:1934–1938

    Article  ADS  Google Scholar 

  40. von Vacano B, Wohlleben W, Motzkus M (2006) Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy. Opt Lett 31:413–415

    Article  ADS  Google Scholar 

  41. Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514

    Article  ADS  Google Scholar 

  42. Brabec T, Krausz F (2000) Intense few-cycle laser fields: frontiers of nonlinear optics. Rev Mod Phys 72:545–591

    Article  ADS  Google Scholar 

  43. Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  44. Zhavoronkov N, Korn G (2002) Generation of single intense short optical pulses by ultrafast molecular phase modulation. Phys Rev Lett 88:203901

    Article  ADS  Google Scholar 

  45. Corkum PB, Krausz F (2007) Attosecond science. Nat Phys 3:381–387

    Article  Google Scholar 

  46. Zheltikov AM, L’Huillier A, Krausz F (2007) Nonlinear optics. In: Träger F (ed) Handbook of lasers and optics. Springer, New York, pp 157–248

    Chapter  Google Scholar 

  47. Bergé L, Skupin S, Nuter R, Kasparian J, Wolf J-P (2007) Ultrashort filaments of light in weakly ionized, optically transparent media. Rep Prog Phys 70:1633–1713

    Article  ADS  Google Scholar 

  48. Couairon A, Mysyrowicz A (2007) Femtosecond filamentation in transparent media. Phys Rep 441:47–189

    Article  ADS  Google Scholar 

  49. Hauri CP, Kornelis W, Helbing FW, Heinrich A, Couairon A, Mysyrowicz A, Biegert J, Keller U (2004) Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl Phys B 79:673–677

    Article  ADS  Google Scholar 

  50. Schenkel B, Paschotta R, Keller U (2005) Pulse compression with supercontinuum generation in microstructure fibers. J Opt Soc Am B 22:687–693

    Article  ADS  Google Scholar 

  51. Agrawal GP (2001) Nonlinear fiber optics. Academic, San Diego

    Google Scholar 

  52. Voronin AA, Fedotov IV, Fedotov AB, Zheltikov AM (2009) Spectral interference of frequency-shifted solitons in a photonic-crystal fiber. Opt Lett 34:569–571

    Article  ADS  Google Scholar 

  53. Solin SA, Ramdas AK (1970) Raman spectrum of diamond. Phys Rev B 1:1687–1698

    Article  ADS  Google Scholar 

  54. Ouzounov DG, Ahmad FR, Müller D, Venkataraman N, Gallagher MT, Thomas MG, Silcox J, Koch KW, Gaeta AL (2003) Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301:1702–1704

    Article  ADS  Google Scholar 

  55. Couny F, Benabid F, Roberts PJ, Light PS, Raymer MG (2007) Generation and photonic guidance of multi-octave optical frequency combs. Science 318:1118–1121

    Article  ADS  Google Scholar 

  56. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  ADS  Google Scholar 

  57. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in biosciences. Nat Biotechnol 21:1369–1377

    Article  Google Scholar 

  58. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  Google Scholar 

  59. Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356–1360

    Article  Google Scholar 

  60. Dombeck DA, Sacconi L, Blanchard-Desce M, Webb WW (2005) Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol 94:3628–3636

    Article  Google Scholar 

  61. Squier JA, Müller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Expr 3:315–324

    Article  ADS  Google Scholar 

  62. Sidorov-Biryukov DA, Naumov AN, Konorov SO, Fedotov AB, Zheltikov AM (2000) Three-dimensional microscopy of laser-produced plasmas using third-harmonic generation. Quantum Electron 30:1080–1083

    Article  ADS  Google Scholar 

  63. Débarre D, Supatto W, Pena A-M, Fabre A, Tordjmann T, Combettes L, Schanne-Klein M-C, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53

    Article  Google Scholar 

  64. Eesley GL (1981) Coherent Raman spectroscopy. Pergamon, Oxford

    Google Scholar 

  65. Eckbreth AC (1988) Laser diagnostics for combustion temperature and species. Abacus, Cambridge

    Google Scholar 

  66. Zheltikov AM, Koroteev NI (1999) Coherent four-wave mixing in excited and ionized gas media. Phys Uspekhi 42:321–351

    Article  ADS  Google Scholar 

  67. Zheltikov AM (2000) Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations. J Raman Spectrosc 31:653–667

    Article  ADS  Google Scholar 

  68. Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys Rev Lett 82:4142–4145

    Article  ADS  Google Scholar 

  69. Evans CL, Potma EO, Puoris'haag M, Côté D, Lin CP, Xie XS (2005) Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci 102:16807–16812

    Article  ADS  Google Scholar 

  70. Laubereau A, von der Linde D, Kaiser W (1971) Decay time of hot TO phonons in diamond. Phys Rev Lett 27:802–805

    Article  ADS  Google Scholar 

  71. Akhmanov SA, Dmitriev VG, Kovrigin AI, Koroteev NI, Tunkin VG, Kholodnykh AI (1972) Active spectroscopy of Raman scattering using an optical parametric oscillator. JETP Lett 15:425–428

    ADS  Google Scholar 

  72. Levenson MD, Flytzanis C, Bloembergen N (1972) Interference of resonant and nonresonant three-wave mixing in diamond. Phys Rev B 6:3962–3965

    Article  ADS  Google Scholar 

  73. Mitrokhin VP, Fedotov AB, Ivanov AA, Alfimov MV, Zheltikov AM (2007) Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter. Opt Lett 32:3471–3473

    Article  ADS  Google Scholar 

  74. Savvin AD, Lanin AA, Voronin AA, Fedotov AB, Zheltikov AM (2010) Coherent anti-Stokes Raman metrology of phonons powered by photonic-crystal fibers. Opt Lett 35:919–921

    Article  ADS  Google Scholar 

  75. McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, Maclaurin D, Prawer S, Mulvaney P, Wrachtrup J, Caruso F, Scholten RE, Hollenberg LCL (2011) Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6:358–363

    Article  ADS  Google Scholar 

  76. Zhi M, Wang X, Sokolov AV (2008) Broadband coherent light generation in diamond driven by femtosecond pulses. Opt Expr 16:12139–12147

    Article  ADS  Google Scholar 

  77. Wrachtrup J, Jelezko F (2006) Processing quantum information in diamond. J Phys Condens Matter 18:S807–S824

    Article  ADS  Google Scholar 

  78. Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau JR, Stravrias N, Greentree AD, Prawer S, Meijer J, Twamley J, Hemmer PR, Wrachtrup J (2006) Room-temperature coherent coupling of single spins in diamond. Nat Phys 2:408–413

    Article  Google Scholar 

  79. Dutt MVG, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov AS, Hemmer PR, Lukin MD (2007) Science 316:1312

    Google Scholar 

  80. Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics. Nat Photon 5:397–405

    Article  ADS  Google Scholar 

  81. Steinke S, Henig A, Schnürer M, Sokollik T, Nickles PV, Jung D, Kiefer D, Hörlein R, Schreiber J, Tajima T, Yan X, Hegelich M, Meyer-ter-Vehn J, Sandner W, Habs D (2010) Laser Part Beams 28:215

    Google Scholar 

  82. Ishioka K, Hase M, Kitajima M, Petek H (2006) Coherent optical phonons in diamond. Appl Phys Lett 89:231916

    Article  ADS  Google Scholar 

  83. Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93:2199–2208

    Article  Google Scholar 

  84. Bühler J, Prior Y (1999) Back-scattering CARS diagnostics on CVD diamond. Diam Relat Mater 8:673–676

    Article  ADS  Google Scholar 

  85. Fedotov AB, Voronin AA, Fedotov IV, Ivanov AA, Zheltikov AM (2009) Opt Lett 34:851

    Google Scholar 

  86. Marangoni M, Gambetta A, Manzoni C, Kumar V, Ramponi R, Cerullo G (2009) Opt Lett 34:3262

    Google Scholar 

  87. Krauss G, Hanke T, Sell A, Träutlein D, Leitenstorfer A, Selm R, Winterhalder M, Zumbusch A (2009) Opt Lett 34:2847

    Google Scholar 

  88. Koroteev NI, Zheltikov AM (1998) Chirp control in third-harmonic generation due to cross-phase modulation. Appl Phys B 67:53–57

    Article  ADS  Google Scholar 

  89. Naumov AN, Zheltikov AM (2002) Asymmetric spectral broadening and temporal evolution of cross-phase-modulated third harmonic pulses. Opt Expr 10:122–127

    Article  ADS  Google Scholar 

  90. Koenig K, Riemann I, Fischer P, Halbhuber KH (1999) Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell Mol Biol 45:195–201

    Google Scholar 

  91. Juhasz T, Frieder H, Kurtz RM, Horvath C, Bille JF, Mourou G (1999) Corneal refractive surgery with femtosecond lasers. IEEE J Sel Top Quantum Electron 5:902–909

    Article  Google Scholar 

  92. König K, Riemann I, Fritzsche W (2001) Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett 26:819–821

    Article  ADS  Google Scholar 

  93. Tirlapur UK, Konig K (2002) Cell biology – targeted transfection by femtosecond laser. Nature 418:290–291

    Article  ADS  Google Scholar 

  94. Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin YS, Ben-Yakar A (2004) Neurosurgery – functional regeneration after laser axotomy. Nature 432:822–822

    Article  ADS  Google Scholar 

  95. Tsai PS, Friedman B, Ifarraguerri AI, Thompson BD, Lev-Ram V, Schaffer CB, Xiong C, Tsien RY, Squier JA, Kleinfeld D (2003) All-optical histology using ultrashort laser pulses. Neuron 39:27–41

    Article  Google Scholar 

  96. Nishimura N, Schaffer CB, Friedman B, Tsai PS, Lyden PD, Kleinfeld D (2006) Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods 3:99–108

    Article  Google Scholar 

  97. Gong JX, Zhao XM, Xing QR, Li F, Li HY, Li YF, Chai L, Wang QY, Zheltikov AM (2008) Femtosecond laser-induced cell fusion. Appl Phys Lett 92:093901

    Article  ADS  Google Scholar 

  98. Zheltikov AM (2004) Isolated waveguide modes of high-intensity light fields. Phys Uspekhi 47:1205–1220

    Article  ADS  Google Scholar 

  99. Tauer J, Orban F, Kofler H, Fedotov AB, Fedotov IV, Mitrokhin VP, Zheltikov AM, Wintner E (2007) High throughput of single high-power laser pulses by hollow photonic band gap fibers. Laser Phys Lett 4:444–448

    Article  ADS  Google Scholar 

  100. Konorov SO, Fedotov AB, Kolevatova OA, Beloglazov VI, Skibina NB, Shcherbakov AV, Wintner E, Zheltikov AM (2003) Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre. J Phys D Appl Phys 36:1375–1381

    Article  ADS  Google Scholar 

  101. Konorov SO, Fedotov AB, Mitrokhin VP, Beloglazov VI, Skibina NB, Shcherbakov AV, Wintner E, Scalora M, Zheltikov AM (2004) Appl Opt 43:2251

    Google Scholar 

  102. Tai S-P, Chan M-C, Tsai T-H, Guol S-H, Chen L-J, Sun C-K (2004) Two-photon fluorescence microscope with a hollow-core photonic crystal fiber. Opt Expr 12:6122–6128

    Article  ADS  Google Scholar 

  103. Fedotov IV, Safronov NA, Shandarov YA, Tashchilina AY, Fedotov AB, Nizovtsev AP, Pustakhod DI, Chizevski VN, Sakoda K, Kilin SY, Zheltikov AM (2012) Photonic-crystal-fiber-coupled photoluminescence interrogation of nitrogen vacancies in diamond nanoparticles. Laser Phys Lett 9:151–154

    Article  ADS  Google Scholar 

  104. Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:883–909

    Article  Google Scholar 

  105. Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R (2011) Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 7:137–145

    Article  Google Scholar 

  106. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Sunney Xie X (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–1861

    Article  ADS  Google Scholar 

  107. Evans CL, Xu X, Kesari S, Sunney Xie X, Wong STC, Young GS (2007) Chemically selective imaging of brain structures with CARS microscopy. Opt Expr 15:12076–12087

    Article  ADS  Google Scholar 

  108. Voronin AA, Fedotov IV, Doronina-Amitonova LV, Ivashkina OI, Zots MA, Fedotov AB, Anokhin KV, Zheltikov AM (2011) Ionization penalty in nonlinear Raman neuroimaging. Opt Lett 36:508–510

    Article  ADS  Google Scholar 

  109. Hell SW (2008) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  Google Scholar 

  110. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei M. Zheltikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zheltikov, A.M. (2013). Photonic-Crystal Fiber Platform for Ultrafast Optical Science. In: Di Bartolo, B., Collins, J. (eds) Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5313-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5313-6_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5312-9

  • Online ISBN: 978-94-007-5313-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics