Skip to main content

Nanophotonics: Linear and Nonlinear Optics at the Nanoscale

  • Conference paper
  • First Online:
Book cover Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale

Abstract

Light propagation in sub-wavelength waveguides enables tight confinement over long propagation lengths to enhance nonlinear optical interactions. Not only can sub-wavelength waveguides compress light spatially, they also provide a tunable means to control the spreading of light pulses in time, producing significant effects even for nanojoule pulse energies. By exploring linear and nonlinear light propagation, first for free-space conditions, then for sub-wavelength guided conditions, we demonstrate how sub-wavelength structure can enhance nonlinear optics at the nanoscale. We demonstrate key applications including wavelength generation and all-optical modulation. Lastly, we show how to assemble these devices to form all-optical logic gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffiths DJ (1999) Introduction to electrodynamics, 3rd edn. Prentice Hall, Upper Saddler River, p xv, 576 p

    Google Scholar 

  2. Hunsperger RG (2009) Integrated optics: theory and technology, 6th edn, Advanced texts in physics. Springer, New York, p xxviii, 513 p

    Google Scholar 

  3. Haus HA (1984) Waves and fields in optoelectronics, Prentice-Hall series in solid state physical electronics. Prentice-Hall, Englewood Cliffs, p xii, 402 p

    Google Scholar 

  4. Application note: prism compressor for ultrashort laser pulses (Newport Corporation, 2006). Retrieved 21 May 2012. http://assets.newport.com/webDocuments-EN/images/12243.pdf

  5. Boyd RW (2008) Nonlinear optics, 3rd edn. Academic, Amsterdam/Boston, p xix, 613 p

    Google Scholar 

  6. Chen JM, Bower JR, Wang CS, Lee CH (1973) Optical second-harmonic generation from submonolayer Na-covered Ge surfaces. Opt Commun 9:132–134

    Article  ADS  Google Scholar 

  7. Shen YR (1989) Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–525

    Article  ADS  Google Scholar 

  8. Boyd RW (2003) Nonlinear optics, 2nd edn. Academic, San Diego, p xvii, 578 p

    Google Scholar 

  9. Agrawal GP (2007) Nonlinear fiber optics, 4th edn, Quantum electronics--principles and applications. Elsevier/Academic Press, Amsterdam/Boston, p xvi, 529 p

    Google Scholar 

  10. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. Quantum Electron IEEE J 26:760–769

    Article  ADS  Google Scholar 

  11. Stryland EWV, Sheik-Bahae M (1998) Z-scan measurements of optical nonlinearities. In: Kuzyk MG, Dirk CW (eds) Characterization techniques and tabulations for organic nonlinear optical materials. Marcel Dekker, New York

    Google Scholar 

  12. Stegeman GI, Wright EM, Finlayson N, Zanoni R, Seaton CT (1988) Third order nonlinear integrated optics. Lightwave Technol J 6:953–970

    Article  ADS  Google Scholar 

  13. Stegeman GI (1993) Material figures of merit and implications to all-optical waveguide switching. SPIE 1852:75–89

    Article  ADS  Google Scholar 

  14. Stegeman GI, Torruellas WE (1996) Nonlinear materials for information processing and communications. Philos Trans Math Phys Eng Sci 354:745–756

    Article  ADS  Google Scholar 

  15. Lin Q, Zhang J, Piredda G, Boyd RW, Fauchet PM, Agrawal GP (2007) Dispersion of silicon nonlinearities in the near infrared region. Appl Phys Lett 91:021111

    Article  ADS  Google Scholar 

  16. Vilson RA, Carlos AB, Roberto RP, Michal L, Mark AF, Dimitre GO, Alexander LG (2004) All-optical switch on a Silicon chip. In: Proceedings of the Conference on lasers and electro-optics/international quantum electronics conference and photonic applications systems technologies, technical digest (CD), Optical Society of America, CTuFF3

    Google Scholar 

  17. Saleh BEA, Teich MC (2007) Fundamentals of photonics, 2nd edn, Wiley series in pure and applied optics. Wiley-Interscience, Hoboken, p xix, 1177 p

    Google Scholar 

  18. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York, p xxi, 808 p

    MATH  Google Scholar 

  19. Gloge D (1971) Dispersion in weakly guiding fibers. Appl Opt 10:2442–2445

    Article  ADS  Google Scholar 

  20. Marcuse D (1979) Interdependence of waveguide and material dispersion. Appl Opt 18:2930–2932

    Article  ADS  Google Scholar 

  21. Tong L, Gattass RR, Ashcom JB, He S, Lou J, Shen M, Maxwell I, Mazur E (2003) Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426:816–819

    Article  ADS  Google Scholar 

  22. Tong LM, Lou JY, Ye ZZ, Svacha GT, Mazur E (2005) Self-modulated taper drawing of silica nanowires. Nanotechnology 16:1445–1448

    Article  Google Scholar 

  23. Svacha G (2008) Nanoscale nonlinear optics using silica nanowires. Harvard University, Cambridge, MA

    Google Scholar 

  24. Tong L, Lou J, Gattass RR, He S, Chen X, Liu L, Mazur E (2005) Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett 5:259–262

    Article  ADS  Google Scholar 

  25. Foster MA, Moll KD, Gaeta AL (2004) Optimal waveguide dimensions for nonlinear interactions. Opt Expr 12:2880–2887

    Article  ADS  Google Scholar 

  26. Huang KJ, Yang SY, Tong LM (2007) Modeling of evanescent coupling between two parallel optical nanowires. Appl Opt 46:1429–1434

    Article  ADS  Google Scholar 

  27. Voss T, Svacha GT, Mazur E, Müller S, Ronning C, Konjhodzic D, Marlow F (2007) High-order waveguide modes in ZnO nanowires. Nano Lett 7:3675–3680

    Article  ADS  Google Scholar 

  28. Zakharov VE, Shabat AB (1972) Exact theory of two-dimensional self-focussing and one-dimensional self-modulating waves in nonlinear media. Sov Phys JETP 34:62

    MathSciNet  ADS  Google Scholar 

  29. Hardin RH, Tappert FD (1973) Numerical solutions of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method. SIAM Rev Chron 15:423

    Google Scholar 

  30. Fisher RA, Bischel W (1973) The role of linear dispersion in plane-wave self-phase modulation. Appl Phys Lett 23:661–663

    Article  ADS  Google Scholar 

  31. Agrawal GP (2001) Applications of nonlinear fiber optics, Optics and photonics. Academic, San Diego, p xiv, 458 p

    Google Scholar 

  32. Paschotta R (2008) Encyclopedia of laser physics and technology. Wiley-VCH, Weinheim

    Google Scholar 

  33. Hasegawa A, Kodama Y (1981) Signal transmission by optical solitons in monomode fiber. Proc IEEE 69:1145–1150

    Article  ADS  Google Scholar 

  34. Blow KJ, Doran NJ (1983) Bandwidth limits of nonlinear (soliton) optical communication systems. Electron Lett 19:429–430

    Article  Google Scholar 

  35. Trillo S, Wabnitz S, Wright EM, Stegeman GI (1988) Soliton switching in fiber nonlinear directional couplers. Opt Lett 13:672

    Article  ADS  Google Scholar 

  36. Blow KJ, Doran NJ, Nayar BK (1989) Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Opt Lett 14:754–756

    Article  ADS  Google Scholar 

  37. Islam MN, Sunderman ER, Stolen RH, Pleibel W, Simpson JR (1989) Soliton switching in a fiber nonlinear loop mirror. Opt Lett 14:811–813

    Article  ADS  Google Scholar 

  38. Adair R, Chase LL, Payne SA (1989) Nonlinear refractive index of optical crystals. Phys Rev B 39:3337

    Article  ADS  Google Scholar 

  39. Leon-Saval S, Birks T, Wadsworth W, Russell PSJ, Mason M (2004) Supercontinuum generation in submicron fibre waveguides. Opt Expr 12:2864–2869

    Article  ADS  Google Scholar 

  40. Gattass RR, Svacha GT, Tong LM, Mazur E (2006) Supercontinuum generation in submicrometer diameter silica fibers. Opt Expr 14:9408–9414

    Article  ADS  Google Scholar 

  41. Sakamaki K, Nakao M, Naganuma M, Izutsu M (2004) Soliton induced supercontinuum generation in photonic crystal fiber. Sel Top Quantum Electron IEEE J 10:876–884

    Article  Google Scholar 

  42. Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D, Knight JC, Wadsworth WJ, Russell PSJ, Korn G (2002) Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys Rev Lett 88:173901

    Article  ADS  Google Scholar 

  43. Cristiani I, Tediosi R, Tartara L, Degiorgio V (2004) Dispersive wave generation by solitons in microstructured optical fibers. Opt Expr 12:124–135

    Article  ADS  Google Scholar 

  44. Tartara L, Cristiani I, Degiorgio V (2003) Blue light and infrared continuum generation by soliton fission in a microstructured fiber. Appl Phys B Laser Opt 77:307–311

    Article  ADS  Google Scholar 

  45. Teipel J, Franke K, Türke D, Warken F, Meiser D, Leuschner M, Giessen H (2003) Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses. Appl Phys B Laser Opt 77:245–251

    Article  ADS  Google Scholar 

  46. Otsuka K (1983) Nonlinear antiresonant ring interferometer. Opt Lett 8:471–473

    Article  MathSciNet  ADS  Google Scholar 

  47. Mortimore DB (1988) Fiber loop reflectors. Lightwave Technol J 6:1217–1224

    Article  ADS  Google Scholar 

  48. Doran NJ, Forrester DS, Nayar BK (1989) Experimental investigation of all-optical switching in fibre loop mirror device. Electron Lett 25:267–269

    Article  Google Scholar 

  49. Huang A, Whitaker N, Avramopoulos H, French P, Houh H, Chuang I (1994) Sagnac fiber logic gates and their possible applications: a system perspective. Appl Opt 33:6254–6267

    Article  ADS  Google Scholar 

  50. Jinno M, Matsumoto T (1992) Nonlinear Sagnac interferometer switch and its applications. Quantum Electron IEEE J 28:875–882

    Article  ADS  Google Scholar 

  51. Cotter D, Manning RJ, Blow KJ, Ellis AD, Kelly AE, Nesset D, Phillips ID, Poustie AJ, Rogers DC (1999) Nonlinear optics for high-speed digital information processing. Science 286:1523–1528

    Article  Google Scholar 

  52. Doran NJ, Wood D (1988) Nonlinear-optical loop mirror. Opt Lett 13:56–58

    Article  ADS  Google Scholar 

  53. Uchiyama K, Takara H, Kawanishi S, Morioka T, Saruwatari M, Kitoh T (1993) 100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating-width control. Electron Lett 29:1870–1871

    Article  Google Scholar 

  54. Asobe M, Ohara T, Yokohama I, Kaino T (1996) Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre. Electron Lett 32:1396–1397

    Article  Google Scholar 

  55. Jiun-Haw L, Ding-An W, Hsin-Jiun C, Ding-Wei H, Gurtler S, Yang CC, Yean-Woei K, Chen BC, Shih MC, Chuang TJ (1999) Nonlinear switching in an all-semiconductor-optical-amplifier loop device. Photon Technol Lett IEEE 11:236–238

    Article  ADS  Google Scholar 

  56. Pelusi MD, Matsui Y, Suzuki A (1999) Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror. Quantum Electron IEEE J 35:867–874

    Article  ADS  Google Scholar 

  57. Bogoni A, Scaffardi M, Ghelfi P, Poti L (2004) Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing. Sel Top Quantum Electron IEEE J 10:1115–1123

    Article  Google Scholar 

  58. Pottiez O, Kuzin EA, Ibarra-Escamilla B, Camas-Anzueto JT, Gutierrez-Zainos F (2004) Experimental demonstration of NOLM switching based on nonlinear polarisation rotation. Electron Lett 40:892–894

    Article  Google Scholar 

  59. Simova E, Golub I, Picard M-J (2005) Ring resonator in a Sagnac loop. J Opt Soc Am B 22:1723–1730

    Article  ADS  Google Scholar 

  60. Sumetsky M (2005) Optical microfiber loop resonator. Appl Phys Lett 86:161108

    Article  ADS  Google Scholar 

  61. Jinno M, Matsumoto T (1991) Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams. Opt Lett 16:220–222

    Article  ADS  Google Scholar 

  62. Miyoshi Y, Ikeda K, Tobioka H, Inoue T, Namiki S, Kitayama K- (2008) Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt Expr 16:2570–2577

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Orad Reshef and Lili Jiang for their insightful discussions and helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Evans, C.C., Mazur, E. (2013). Nanophotonics: Linear and Nonlinear Optics at the Nanoscale. In: Di Bartolo, B., Collins, J. (eds) Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5313-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5313-6_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5312-9

  • Online ISBN: 978-94-007-5313-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics