Skip to main content

Is There Segregation of Rare Earth Ions in Garnet Optical Ceramics?

  • Conference paper
  • First Online:
  • 3196 Accesses

Abstract

Research on advanced optical materials for a large variety of applications is always increasing. As an example, we can note high progress in solid-state laser sources like laser-diode (LD) – pumped solid-state lasers (DPSSL) including developments of new materials and high-power laser diode led to high-power and tuneable solid-state lasers. A wide variety of materials has been studied to develop more efficient and high power microchip lasers [1]. In end-pumping schemes, in particular, materials with a short absorption length for the LD pump beam are strongly anticipated for highly efficient operations because of the excellent match between the mode and pump beam profiles. High Nd3+ concentrations were so considered such as NdP5O14, LiNdP4O12 (LNP), and NdAl3(BO3)O4. However, crystal growths of these compositions are not so easy. Cubic crystals are much more researched. When looking at the literature for actual applications, we see immediately the importance of cubic garnet crystals for which dodecahedral (Y3+), octahedral (Al3+) and tetrahedral (Al3+) sites are considered as a reservoir for many activators like: Ce3+, Nd3+, Er3+, Tm3+, Ho3+, Yb3+ rare earth ions in dodecahedral symmetry sites and transition metal ions like Cr3+ in the octahedral symmetry sites or Cr4+ in the tetrahedral symmetry sites. Among garnet crystals, Y3Al5O12 (YAG) host is the most used, commercially produced by the Czochralski method. However, in the case of the most used Nd3+: YAG laser crystal, the Nd3+ concentration that affects the performance in laser applications, is strongly limited to 0.2–1.4 Nd3+ at. % as a result of the segregation distribution coefficient [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kawai R, Miyasaka Y, Otsuka K, Ohtomo T, Narita T, Ko JY, Shoji I, Taira T (2004) Opt Express 12(10):2293

    Article  ADS  Google Scholar 

  2. Ikesue A, Furusato I, Kamata K (1995) J Am Ceram Soc 78:225–228

    Article  Google Scholar 

  3. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) J Am Ceram Soc 78:1033–1040

    Article  ADS  Google Scholar 

  4. Lu JR, Ueda K, Yagi H, Yanagitani T, Akiyama T, Kaminskii AA (2002) J Alloys Comp 341:220–225

    Article  Google Scholar 

  5. Rabinovitch Y, Tetard D, Faucher MD, Pham-Thi M (2003) Opt Mater 24(1, 2):345–351

    Article  ADS  Google Scholar 

  6. Dubinskiy M, Merkle LD, Goff JR, Quarles GJ, Castillo VK, Schepler KL, Zelmon D, Guha S, Gonzalez LP, Rickey MR, Lee JJ, Hegde SM, Dumm JQ, Messing GL, Lee S-H (2005) SPIE 5792:1–9

    Article  ADS  Google Scholar 

  7. Shoji I, Kurimura S, Sato Y, Taira T, Ikesue A, Yoshida K (2000) Appl Phys Lett 77:939–941

    Article  ADS  Google Scholar 

  8. Shoji I, Sato Y, Kurimura S, Lupei V, Taira T, Ikesue A, Yoshida K (2002) Opt Lett 27:234–236

    Article  ADS  Google Scholar 

  9. Taira T, Ikesue A, Yoshida K (1998) Diode-pumped Nd:YAG ceramic lasers. OSA TOPS 19:430–432

    Google Scholar 

  10. Ramirez MO, Wisdom J, Li H, Aung YL, Stitt J, Messing GL, Dierolf V, Liu Z, Ikesue A, Byer RL, Gopalan V (2008) Opt Express 16(9):5965

    Article  Google Scholar 

  11. Yanagida T, Itoh T, Takahashi H, Hirakuri S, Kokubun M, Makishima K, Sato M, Enoto T, Yanagitani T, Yagi H, Shigetad T, Ito T (2007) Nucl Instrum Methods Phys Res A 21:23–26

    Article  ADS  Google Scholar 

  12. Yanagida T et al (2005) IEEE Trans Nucl Sci NS-52 (5) part 3: 1836

    Google Scholar 

  13. Takahashi H, Yanagida T et al (2006) IEEE Trans Nucl Sci 53:2404

    Article  ADS  Google Scholar 

  14. Bachmann V, Ronda C, Meijerink A (2009) Chem Mater 21(10):2077–2084

    Article  Google Scholar 

  15. Cuche A, Masenelli B, Ledoux G, Amans D, Dujardin C, Sonnefraud Y, Mélinon P, Huant S (2009) Nanotechnology 20:015603

    Article  ADS  Google Scholar 

  16. Jacinto C, Benayas A, Catunda T, García-Solé J, Kaminskii AA, Jaque D (2008) J Chem Phys 129:104705

    Article  ADS  Google Scholar 

  17. Chani VI, Yoshikawa A, Kuwano Y, Hasegawa K, Fukuda T (1999) J Cryst Growth 204:155

    Article  ADS  Google Scholar 

  18. Chani VI, Tschudi TT (ed.) (1990) Thin films in optics. In: Proceedings of the SPIE 1125. SPIE, Bellingham, Washington, DC, 107

    Google Scholar 

  19. Chani VI, Fukuda T, Rudolph P, Uda S (eds) (2004) Fiber crystal growth from the melt. Springer, Berlin/Heidelberg/New York, pp 129–130

    Google Scholar 

  20. Zhao W, Anghel S, Mancini C, Amans D, Boulon G, Epicier T, Shi Y, Feng XQ, Pan YB, Chani V, Yoshikawa A (2011) Opt Mater 33:684–687

    Article  ADS  Google Scholar 

  21. Zhao W, Mancini C, Amans D, Boulon G, Epicier T, Min Y, Yagi H, Yanagitani T, Yanagida T, Yoshikawa A (2010) Jpn J Appl Phys 49:022602

    Article  ADS  Google Scholar 

  22. Shi Y, Pan YB, Feng XQ, Li J, Guo J-K (2012) J Inorg Mater (China) 25(2):125–128

    Google Scholar 

  23. Kansuwan P, Rickman JM (2007) J Chem Phys 126:094707

    Article  ADS  Google Scholar 

  24. Esposito L, Epicier T, Serantoni M, Piancastelli A, Alderighi D, Pirri A, Toci G, Vannini M, Anghel S, Boulon G (2012) J Eur Ceram Soc. Accepted on 27 February

    Google Scholar 

  25. Chani VI (1990) Thin films in optics. In: Tschudi TT (ed) Proceedings of the SPIE 1125 SPIE, Bellingham, Washington, DC, 107

    Google Scholar 

  26. Chani VI (2004) In: Fukuda T, Rudolph P, Uda S (eds) Fiber crystal growth from the melt. Springer, Berlin/Heidelberg/New York, p 129

    Google Scholar 

  27. Simura R, Yoshikawa A, Uda S (2009) J Cryst Growth 311(23–24):4763

    Article  ADS  Google Scholar 

  28. Chani VI, Boulon G, Zhao W, Yanagida T, Yoshikawa A (2010) Jpn J Appl Phys 49(7 part 1):0756011–0756016

    Google Scholar 

  29. Merkle LD, Dubinskii M, Schlepler KL, Hedge SM (2006) Opt. Express 14:3893

    Article  ADS  Google Scholar 

  30. Jiang B, Li J, Liu W, Pan Y (2012) to appear in Optical Materials

    Google Scholar 

Download references

Acknowledgements

We wish to thank the China Scholarship Council (CSC) and University of Science and Technology of China (USTC) at Hefei (China) for the scholarship supporting one of us (w.z) for working in the laboratory “Physico Chimie des Matériaux Luminescents”, UMR 5620 CNRS, UCBLyon. We also thank very much Dr. Malgorzata Guzik from the Department of Chemistry of the University of Wroclaw (Poland) for her great help during her post-doc stay at LPCML of UCBLyon1.

Warm thanks are due to all providers of ceramic samples:

- Y. Pan, X. Feng, B. Jiang, Y. Shi of the, Key Laboratory of Transparent Opto-Functional Inorganic Materials, Chinese Academy of Sciences, Shanghai Institute of Ceramics, and W. Chen from the Shanghai Institute of Optics and Fine Mechanics, for elaboration of the Yb3+-doped YAG ceramics. .

We are grateful to the CLYM (Centre Lyonnais de Microscopie) and the laboratory “Matériaux, Ingénierie et Sciences (MATEIS)”, CNRS UMR 5510, Université de Lyon, INSA-Lyon for the access to the Transmission Electronic Microscope Technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Boulon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Boulon, G., Epicier, T., Zhao, W., Guzik, M., Pan, Y., Jiang, B. (2013). Is There Segregation of Rare Earth Ions in Garnet Optical Ceramics?. In: Di Bartolo, B., Collins, J. (eds) Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5313-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5313-6_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5312-9

  • Online ISBN: 978-94-007-5313-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics