Skip to main content

Simulation of Nuclear Dynamics of C60: From Vibrational Excitation by Near-IR Femtosecond Laser Pulses to Subsequent Nanosecond Rearrangement and Fragmentation

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

  • 1951 Accesses

Abstract

Impulsive Raman excitation of C60 by single or double near-IR femtosecond pulses of λ = 1,800 nm was investigated by using a time-dependent adiabatic state approach combined with the density functional theory method. We confirmed that the vibrational energy stored in a Raman active mode of C60 is maximized when T pT vib/2 in the case of a single pulse, where T p is the pulse length and T vib is the vibrational period of the mode. In the case of a double pulse, mode selective excitation can be achieved by adjusting the pulse interval τ. The energy of a Raman active mode is maximized if τ is chosen to equal an integer multiple of T vib, and it is minimized if τ is equal to a half-integer multiple of T vib. The energy stored can be larger than the barrier heights for rearrangement or fragmentation processes. The picosecond or nanosecond dynamics of resulting Stone-Wales rearrangement (SWR) and fragmentation are also investigated by using the density functional-based tight-binding semiempirical method. We present how SWRs are caused by the flow of vibrational kinetic energy on the carbon network of C60. In the case where the hg(1) prolate-oblate mode is initially excited, the number of SWRs prior to fragmentation is larger than in the case of ag(1) mode excitation for the same excess vibrational energy. Fragmentation by C2-ejection is found to occur from strained, fused pentagon/pentagon defects produced by a preceding SWR, which confirms the earliest mechanistic speculations of Smalley et al. (J. Chem. Phys. 88, 220, 1988). The fragmentation rate of C60 → C58 + C2 in the case of hg(1) prolate-oblate mode excitation does not follow a statistical description as employed for instance in the Rice-Ramsperger-Kassel (RRK) theory, whereas the rate for ag(1) mode excitation does follow predictions made by RRK. We also found for the hg(1) mode excitation that the nonstatistical nature still remains in the distribution of barycentric velocities of fragments C58 and C2. This result suggests that it is possible to control rearrangement and subsequent bond breaking in a “nonstatistical” way by initial selective mode excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nano- tubes. Academic, San Diego

    Google Scholar 

  3. Kroto HW, Walton DRM (2011) In: Langa F, Nierengarten JF (eds) Fullerenes: principles and applications, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Hertel IV, Laarmann T, Schulz CP (2005) Adv Atom Mol Opt Phys 50:219

    Article  CAS  Google Scholar 

  5. O’Brien SC, Heath JR, Curl RF, Smalley RE (1988) J Chem Phys 88:220

    Article  Google Scholar 

  6. Matt S, Echt O, Scheier P, Märk TD (2001) Chem Phys Lett 348:194

    Article  CAS  Google Scholar 

  7. de Vries J, Steger H, Kamke B, Menzel C, Weisser B, Kamke W, Hertel IV (1992) Chem Phys Lett 188:159

    Article  Google Scholar 

  8. Reinköster A, Korica S, Prümper G, Viefhaus J, Godehusen K, Schwarzkopf O, Mast M, Becker U (2004) J Phys B 37:2135

    Article  Google Scholar 

  9. Laarmann T, Shchatsinin I, Stalmashonak A, Boyle M, Zhavoronkov N, Handt J, Schmidt R, Schulz CP, Hertel IV (2007) Phys Rev Lett 98:058302

    Article  CAS  Google Scholar 

  10. Foltin V, Foltin M, Matt S, Scheier P, Becker K, Deutsch H, Märk TD (1998) Chem Phys Lett 289:181

    Article  CAS  Google Scholar 

  11. Jensen J, Zettergren H, Schmidt HT, Cederquist H, Tomita S, Nielsen SB, Rangama J, Hvelplund P, Manil B, Huber BA (2004) Phys Rev A 69:053203

    Article  Google Scholar 

  12. Campbell EEB, Raz T, Levine RD (1996) Chem Phys Lett 253:261

    Article  CAS  Google Scholar 

  13. Hansen K, Hoffmann K, Campbell EEB (2003) J Chem Phys 119:2513

    Article  CAS  Google Scholar 

  14. Shchatsinin I, Laarmann T, Stibenz G, Steinmeyer G, Stalmashonak A, Zhavoronkov N, Schulz CP, Hertel IV (2006) J Chem Phys 125:194320

    Article  Google Scholar 

  15. Brabec T, Côté M, Boulanger P, Ramunno L (2005) Phys Rev Lett 95:073001

    Article  Google Scholar 

  16. Jaroń-Becker A, Becker A, Faisal FHM (2006) Phys Rev Lett 96:143006

    Article  Google Scholar 

  17. Hertel IV, Shchatsinin I, Zhavoronkov N, Ritze H-H, Schulz CP (2009) Phys Rev Lett 102:023003

    Article  CAS  Google Scholar 

  18. Shchatsinin I, Ritze H-H, Schulz CP, Hertel IV (2009) Phys Rev A 79:053414

    Article  Google Scholar 

  19. Torralva B, Niehaus TA, Elstner M, Suhai S, Frauenheim T, Allen RE (2001) Phys Rev B 64:153105

    Article  Google Scholar 

  20. Zhang GP, Sun X, George TF (2003) Phys Rev B 68:165410

    Article  Google Scholar 

  21. Laarmann T, Schulz CP, Hertel IV (2008) In: Yamanouchi K, Chin SL, Agostini P, Ferrante G (eds) Progress in ultrafast intense laser science III. Springer, Heidelberg, pp 129–148

    Chapter  Google Scholar 

  22. Antoine R, Dugourd P, Rayane D, Benichou E, Broyer M, Chandezon F, Guet C (1999) J Chem Phys 110:9771

    Article  CAS  Google Scholar 

  23. Bhardwaj VR, Corkum PB, Rayner DM (2003) Phys Rev Lett 91:203004

    Article  CAS  Google Scholar 

  24. Nakai K, Kono H, Sato Y, Niitsu N, Sahnoun R, Tanaka M, Fujimura Y (2007) Chem Phys 338:127

    Article  CAS  Google Scholar 

  25. Sato Y, Kono H, Koseki S, Fujimura Y (2003) J Am Chem Soc 125:8019

    Article  CAS  Google Scholar 

  26. Kono H, Sato Y, Tanaka N, Kato T, Nakai K, Koseki S, Fujimura Y (2004) Chem Phys 304:203

    Article  CAS  Google Scholar 

  27. Kono H, Sato Y, Kanno M, Nakai K, Kato T (2006) Bull Chem Soc Jpn 79:196

    Article  CAS  Google Scholar 

  28. Jortner J, Levine RD (1991) In: Jortner J, Levine RD, Pullman A (eds) Mode selective chemistry. Kluwer, Dordrecht, p 535

    Google Scholar 

  29. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947

    Article  CAS  Google Scholar 

  30. Seifert G, Porezag D, Frauenheim T (1996) Int J Quant Chem 58:185

    Article  CAS  Google Scholar 

  31. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  32. Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501

    Article  CAS  Google Scholar 

  33. Murry RL, Strout DL, Odom GK, Scuseria GE (1993) Nature 366:665

    Article  CAS  Google Scholar 

  34. Irle S, Zheng G, Wang Z, Morokuma K (2006) J Phys Chem B 110:14531

    Article  CAS  Google Scholar 

  35. Fedorov AS, Fedorov DA, Kuzubov AA, Avramov PV, Nishimura Y, Irle S, Witek HA (2011) Phys Rev Lett 107:175506

    Article  CAS  Google Scholar 

  36. Yan Y-X, Gamble EB Jr, Nelson KA (1985) J Chem Phys 83:5391

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski S, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford. GAUSSIAN 03, Revision E.01

    Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr.,Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford. GAUSSIAN 09, Revision A.02

    Google Scholar 

  39. Choi CH, Kertesz M, Mihaly L (2000) J Phys Chem 104:102

    Article  CAS  Google Scholar 

  40. Elstner M (1998) Dissertation at the University Paderborn

    Google Scholar 

  41. Zheng G, Irle S, Morokuma K (2005) Chem Phys Lett 412:210

    Article  CAS  Google Scholar 

  42. Zheng G, Wang Z, Irle S, Morokuma K (2007) J Nanosci Nanotechnol 7:1662

    Article  CAS  Google Scholar 

  43. Saha B, Shindo S, Irle S, Morokuma K (2009) ACS Nano 3:2241

    Article  CAS  Google Scholar 

  44. Jakowsi J, Irle S, Morokuma K (2010) Phys Rev B 82:125443

    Article  Google Scholar 

  45. Sahnoun R, Nakai K, Sato Y, Kono H, Fujimura Y, Tanaka M (2006) Chem Phys Lett 430:167

    Article  CAS  Google Scholar 

  46. Sahnoun R, Nakai K, Sato Y, Kono H, Fujimura Y, Tanaka M (2006) J Chem Phys 125:184306

    Article  Google Scholar 

  47. Kono H, Koseki S (2002) In: Bandrauk AD, Fujimura Y, Gordon RJ (eds) Laser control and manipulation of molecules. American Chemical Society, Washington, DC, pp 267–284

    Chapter  Google Scholar 

  48. Zhou X, Lin Z, Jiang C, Gao M, Allen RE (2010) Phys Rev B 82:075433

    Article  Google Scholar 

  49. Boyle M, Laarmann T, Shchatsinin I, Schulz CP, Hertel IV (2005) J Chem Phys 122:181103

    Article  CAS  Google Scholar 

  50. Shchatsinin I, Laarmann T, Zhavoronkov N, Schulz CP, Hertel IV (2008) J Chem Phys 129:204308

    Article  Google Scholar 

  51. Kroto HW (1987) Nature 329:529

    Article  CAS  Google Scholar 

  52. Bettinger HF, Yakobson BI, Scuseria GE (2003) J Am Chem Soc 125:5572

    Article  CAS  Google Scholar 

  53. Podlivaev AI, Openov LA (2005) JETP Lett 81:533

    Article  CAS  Google Scholar 

  54. Lifshitz C (2002) Eur J Mass Spectrom 8:85

    Article  CAS  Google Scholar 

  55. Forst W (2003) Unimolecular reactions. Cambridge, Cambridge

    Google Scholar 

  56. Baer T, Hase WL (1996) Unimolecular reaction dynamics. Oxford University Press, New York

    Google Scholar 

  57. Katayanagi H, Mitsuke K (2010) J Chem Phys 133:081101

    Article  Google Scholar 

  58. Katayanagi H, Mitsuke K (2011) J Chem Phys 135:144307

    Article  Google Scholar 

  59. Zettergren H, Alcami M, Martin F (2008) Chem Phys Chem 9:861

    Article  CAS  Google Scholar 

  60. Beu TA, Horváth L, Ghişoiu I (2009) Phys Rev B 79:054112

    Article  Google Scholar 

  61. Beu TA, Jurjiu A (2011) Phys Rev B 83:024103

    Article  Google Scholar 

  62. Churilov GN, Fedorov AS, Novikov PV (2003) Carbon 41:173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for Scientific Research No. 21350005, and the Joint Studies Program (2011) of the Institute for Molecular Science. The authors are grateful to Prof. I.V. Hertel for his valuable discussion on the dynamics of C60. We thank Prof. Thomas Frauenheim for providing the DFTB + program and parameters and also Prof. Keiji Morokuma for advice on the use of the DFTB + program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Niitsu, N. et al. (2012). Simulation of Nuclear Dynamics of C60: From Vibrational Excitation by Near-IR Femtosecond Laser Pulses to Subsequent Nanosecond Rearrangement and Fragmentation. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_7

Download citation

Publish with us

Policies and ethics