Skip to main content

Laser-Induced Electronic and Nuclear Coherent Motions in Chiral Aromatic Molecules

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

The results of theoretical studies on laser-induced electronic and nuclear motions of chiral aromatic molecules are reviewed. The control schemes for π-electron rotation (ring current) and nonadiabatically coupled molecular vibration in chiral aromatic molecules by means of ultrashort linearly polarized laser pulses are presented. Ansa (planar-chiral) aromatic molecules with a six-membered ring, which are pyrazine derivatives, are adopted as model systems. We provide the pulse-design scheme to induce π-electron rotation and show that the rotation direction, clockwise or counterclockwise, can be controlled by the polarization direction of the incident linearly polarized laser pulse. The linearly polarized laser pulse creates a linear combination of quasi-degenerate excited states. Then the results of nuclear wave-packet simulation taking into account the nonadiabatic coupling between optically induced π-electron rotation and molecular vibration are compared to those obtained within the Born-Oppenheimer approximation. Strong dependence of the vibrational amplitudes on rotation direction of π electrons as a consequence of nonadiabatic coupling was found. Vibrational wave packets on the potential surfaces in the two electronic states are produced, and they interfere with each other, constructively or destructively. This suggests that attosecond π-electron rotation can be identified by spectroscopic detection of femtosecond molecular vibrations. Photon polarization-dependent nonadiabatic coupling effects of coherently excited quasi-degenerate electronic states are also explained by an analytical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer JC, Corkum PB, Villeneuve DM (2004) Nature (London) 432:867

    Article  CAS  Google Scholar 

  2. Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R, Salières P (2010) Nat Phys 6:200

    Article  CAS  Google Scholar 

  3. Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S (2011) Nat Phys 7:822

    Article  Google Scholar 

  4. Arasaki Y, Takatsuka K, Wang K, McKoy V (2010) J Chem Phys 132:124307; Arasaki Y, Wang K, McKoy V, Takatsuka K (2011) Phys Chem Chem Phys 13:8681

    Google Scholar 

  5. Bisgaard CZ, Clarkin OJ, Wu G, Lee AMD, Geßner O, Hayden CC, Stolow A (2009) Science 323:1464; Hockett P, Bisgaard CZ, Clarkin OJ, Stolow A (2011) Nat Phys 7:612

    Google Scholar 

  6. Suzuki Y, Stener M, Seideman T (2002) Phys Rev Lett 89: 233002; (2003) J Chem Phys 118:4432

    Google Scholar 

  7. Horio T, Fuji T, Suzuki Y, Suzuki T (2009) J Am Chem Soc 131:10392; Liu SY, Ogi Y, Fuji T, Nishizawa K, Horio T, Mizuno T, Kohguchi H, Nagasono M, Togashi T, Tono K, Yabashi M, Senba Y, Ohashi H, Kimura H, Ishikawa T, Suzuki T (2010) Phys Rev A 81:031403(R)

    Google Scholar 

  8. Fuji T, Suzuki Y, Horio T, Suzuki T, Mitrić R, Werner U, Bonačić-Koutecký V (2010) J Chem Phys 133:234303

    Article  Google Scholar 

  9. Abulimiti B, Zhu R, Long J, Xu Y, Liu Y, Ghazal AY, Yang M, Zhang B (2011) J Chem Phys 134:234301

    Article  Google Scholar 

  10. Alon OE, Averbukh V, Moiseyev N (1998) Phys Rev Lett 80:3743; Baer R, Neuhauser D, Ždánská PR, Moiseyev N (2003) Phys Rev A 68:043406

    Google Scholar 

  11. Ceccherini F, Bauer D, Cornolti F (2001) J Phys B At Mol Opt Phys 34:5017; Ceccherini F, Bauer D (2001) Phys Rev A 64:033423

    Google Scholar 

  12. Nobusada K, Yabana K (2007) Phys Rev A 75:032518

    Article  Google Scholar 

  13. Ulusoy IS, Nest M (2011) J Am Chem Soc 133:20230

    Article  CAS  Google Scholar 

  14. Barth I, Manz J (2006) Angew Chem 118:3028; (2006) Angew Chem Int Ed 45: 2962; Barth I, Manz J, Shigeta Y, Yagi K (2006) J Am Chem Soc 128:7043

    Google Scholar 

  15. Kanno M, Kono H, Fujimura Y (2006) Angew Chem 118:8163; (2006) Angew Chem Int Ed 45:7995

    Google Scholar 

  16. Kanno M, Kono H, Fujimura Y, Lin SH (2010) Phys Rev Lett 104:108302

    Article  Google Scholar 

  17. Kanno M, Kono H, Fujimura Y (2011) In: Yamanouchi K, Charalambidis D, Normand D (eds.) Progress in ultrafast intense laser science, vol 7. Springer, Berlin, pp 53–78

    Google Scholar 

  18. Mineo H, Kanno M, Kono H, Chao SD, Lin SH, Fujimura Y (2012) Chem Phys 392:136

    Article  CAS  Google Scholar 

  19. Born M, Oppenheimer JR (1927) Ann Phys 84:457

    Article  CAS  Google Scholar 

  20. Salem L (1966) The molecular orbital theory of conjugated systems. Benjamin, New York, pp 110–127

    Google Scholar 

  21. Frost AA, Musulin B (1953) J Chem Phys 21:572

    Article  CAS  Google Scholar 

  22. Rubio M, Ross BO, Serrano-Andrés L, Merchán M (1999) J Chem Phys 110:7202

    Article  CAS  Google Scholar 

  23. Sundholm D (2000) Chem Phys Lett 317:392

    Article  CAS  Google Scholar 

  24. Abe S, Yu J, Su WP (1992) Phys Rev B 45:8264; Shakin VA, Abe S (1994) ibid. 50:4306

    Google Scholar 

  25. Chandross M, Shimoi Y, Mazumdar S (1999) Phys Rev B 59:4822; Suzuki M, Mukamel S (2003) J Chem Phys 119: 4722

    Google Scholar 

  26. Ohno K (1964) Theor Chim Acta 2:219

    Article  CAS  Google Scholar 

  27. Hückel E (1931) Z Phys 70:204; (1931) 72:310; (1932) 76:628

    Google Scholar 

  28. Streitwieser A Jr (1961) Molecular orbital theory for organic chemists. Wiley, New York, p 117

    Google Scholar 

  29. Shore BW (1990) The theory of coherent atomic excitation, vol 1. Wiley, New York, pp 304–309

    Google Scholar 

  30. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) MOLPRO, version 2006.1, Cardiff, UK

    Google Scholar 

  31. Levine IN (2009) Quantum chemistry, 6th edn. Prentice Hall, Upper Saddle River, pp 471–635

    Google Scholar 

  32. Ohtsuki Y, Nakagami K, Fujimura Y (2001) In: Lin SH, Villaeys AA, Fujimura Y (eds.) Advances in multi-photon processes and spectroscopy, vol 13. World Scientific, Singapore, pp 1–127

    Google Scholar 

  33. Gross P, Neuhauser D, Rabitz H (1992) J Chem Phys 96:2834

    Article  CAS  Google Scholar 

  34. Baer M (2006) Beyond Born-Oppenheimer. Wiley, Hoboken, pp 26–57

    Book  Google Scholar 

  35. Sarkar B, Adhikari S (2009) Int J Quant Chem 109:650

    Article  CAS  Google Scholar 

  36. Simah D, Hartke B, Werner H-J (1999) J Chem Phys 111:4523

    Article  CAS  Google Scholar 

  37. Tannor DJ (2007) Introduction to quantum mechanics: a time-dependent perspective. University Science, Sausalito, pp 81–86

    Google Scholar 

  38. Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T (2008) Science 322:1073

    Article  CAS  Google Scholar 

  39. Kanno M, Hoki K, Kono H, Fujimura Y (2007) J Chem Phys 127:204314

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS Research Grants (No. 23750003 and No. 23550003). Yuichi Fujimura appreciates the National Science Council in Taiwan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Fujimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kanno, M., Kono, H., Lin, S.H., Fujimura, Y. (2012). Laser-Induced Electronic and Nuclear Coherent Motions in Chiral Aromatic Molecules. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_6

Download citation

Publish with us

Policies and ethics