Skip to main content

Molecular Dynamics Study of Glutathione S-Transferase: Structure and Binding Character of Glutathione

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

Molecular dynamics simulations of the glutathione S-transferase (GST) dimer in the absence or the presence of glutathione were carried out in order to investigate the binding effects of glutathione on the dynamical structure and thermal stability of the GST dimer in water. Enhanced local fluctuations in the GST dimer backbone were observed in the absence of glutathione. The hydrogen bonds formed between glutathione and the GST dimer were changed in the absence of glutathione, and these hydrogen bonds mediate the binding between the subunits of the GST dimer. The free energy analysis showed that the hydrogen bonds between glutathione and the GST dimer largely contribute to the binding energy of glutathione and the thermal stability of the glutathione-GST dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossjohn J, McKinstry WJ, Oakley AJ, Verger D, Flangan J, Chelvanayagam G, Tan K, Coard PG, Parker MW (1998) Structure 6:309–322

    Article  CAS  Google Scholar 

  2. Board PG, Barker RT, Chelvanayagam G, Jermiin LS (1997) Structure 6:309–322

    Google Scholar 

  3. Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jorncall H (1985) Proc Natl Acad Sci U S A 82:7202–7206

    Article  CAS  Google Scholar 

  4. Meyer DJ, Close B, Pemble SE, Gilmore KS, Fraser GM, Ketter B (1991) Biochem J 274:409–414

    CAS  Google Scholar 

  5. Meyer D, Thomas M (1995) Biochem J 311:739–742

    CAS  Google Scholar 

  6. Pemble SE, Wardle AF, Taylor JB (1996) Eur J Biochem 220:645–661

    Google Scholar 

  7. Ketterer B, Coles B, Meyer DJ (1983) Environ Heal Perspect 49:59–69

    Article  CAS  Google Scholar 

  8. Armstrong RN (1991) Chem Res Toxicol 4:131–140

    Article  CAS  Google Scholar 

  9. Caccuri AM, Antonini G, Board PG, Flanagan J, Parker MW, Paolesse R, Turella P, Federici G, Bello ML, Ricci G (2001) J Bio Chem 276:5427–5431

    Article  CAS  Google Scholar 

  10. Caccuri AM, Antonini G, Nicotra M, Battistoni A, Bello ML, Board PG, Parker MW, Ricci G (1997) J Bio Chem 272:29681–29686

    Article  CAS  Google Scholar 

  11. Stella L, Nicotra M, Ricci G, Rosato N, Di lorio EE (1999) Proteins Struct Funct Bioinform 37:1–9

    CAS  Google Scholar 

  12. Stella L, Di lorio EE, Nicotra M, Ricci G (1999) Proteins Struct Funct Bioinform 37:10–19

    Article  CAS  Google Scholar 

  13. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  14. Cornell WD, Cieplak P, Fould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  15. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  16. Jack K (2006) Structure in protein chemistry. Garland Science, New York

    Google Scholar 

  17. Besler BH, Merz KM Jr, Kollman PA (1990) J Comp Chem 11:431

    Article  CAS  Google Scholar 

  18. Darden T, York D, Pedersen L (1993) J Chem Phys 100:2364

    Google Scholar 

  19. Essmann U, Perea L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  20. Sigalov G, Fenley A, Onufriv A (2006) J Chem Phys 124:124902

    Article  Google Scholar 

  21. Sigalov G, Scheffel P, Onufriv A (2005) J Chem Phys 122:14511

    Article  Google Scholar 

  22. Karplus M, Kushick JN (1981) Macromolecules 14:325–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some of the calculations were performed using the computational resources at JAIST and Research Center for Computational Science, Okazaki, Japan. This research was supported by CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency (JST), and Grant-in-Aid for Young Scientists B (23750008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Omae, Y. et al. (2012). Molecular Dynamics Study of Glutathione S-Transferase: Structure and Binding Character of Glutathione. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_32

Download citation

Publish with us

Policies and ethics