Skip to main content

Free Energy of Cell-Penetrating Peptide through Lipid Bilayer Membrane: Coarse-Grained Model Simulation

  • Conference paper
  • First Online:

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

Cell-penetrating peptides can permeate through the plasma membrane. The permeation ability is useful for delivery of bioactive molecules. Experiments suggest that the binding between the guanidino group in the peptide and lipid headgroups is of crucial importance in the peptide permeation through lipid membranes. We investigate the free energy profile for the permeation of the peptide through the lipid bilayer membrane with changing the binding strength by a series of coarse-grained molecular dynamics simulation. We found that the energy barrier for the permeation has the minimum at the medium strength of the binding (∼2ε). Our result suggests that the appropriate attractive interaction between peptide and lipid headgroups enhances the permeation of the peptide across the lipid membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepisky B, Barsoum J (1994) Proc Natl Acad Sci USA 91:664–668

    Article  CAS  Google Scholar 

  2. Futaki S (2000) J Biol Chem 276:5836–5840

    Article  Google Scholar 

  3. Nakase I, Takeuchi T, Tanaka G, Futaki S (2008) Adv Drug Deliv Rev 60:598–607

    Article  CAS  Google Scholar 

  4. Moriguchi R, Kogure K, Akita H, Futaki S, Miyagishi M, Taira K, Harashima H (2005) Int J Pharm 301:277–285

    Article  CAS  Google Scholar 

  5. Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Chembiochem 6:2126–2142

    Article  CAS  Google Scholar 

  6. Futaki S (2005) Adv Drug Deliv Rev 57:547–558

    Article  CAS  Google Scholar 

  7. Shinoda K, Shinoda W, Mikami M (2008) J Comput Chem 29:1912–1918

    Article  CAS  Google Scholar 

  8. Shinoda W, Shinoda K, Baba T, Mikami M (2005) Biophys J 89:3195–3202

    Article  CAS  Google Scholar 

  9. Jedlovszky P, Mezei M (2000) J Am Chem Soc 122:5125–5131

    Article  CAS  Google Scholar 

  10. Shinoda W, Mikami M, Baba T, Hato M (2004) J Phys Chem B 108:9346–9356

    Article  CAS  Google Scholar 

  11. Shinoda K, Shinoda W, Baba T, Mikami M (2004) J Chem Phys 121:9648–9654

    Article  CAS  Google Scholar 

  12. Marrink SJ, Berendsen HJC (1994) J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  13. Bemporad D, Essex JW, Luttmann C (2004) J Phys Chem B 108:4875–4884

    Article  CAS  Google Scholar 

  14. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) J Biol Chem 271:18188–18193

    Article  CAS  Google Scholar 

  15. Prochiantz A (1996) Curr Opin Neurobiol 6:629–634

    Article  CAS  Google Scholar 

  16. Kawamoto S, Takasu M, Miyakawa T, Morikawa R, Oda T, Futaki S, Nagao H (2011) J Chem Phys 134:095103–095108

    Article  Google Scholar 

  17. Kawamoto S, Miyakawa T, Takasu M, Morikawa R, Oda T, Saito H, Futaki S, Nagao H (2011) Int J Quantum Chem 112:178–183

    Article  Google Scholar 

  18. Marrink SJ, de Vries AH, Tieleman DP (2009) Biochim Biophys Acta 1788:149–168

    Article  CAS  Google Scholar 

  19. Noguchi H (2009) J Phys Soc Jap 78:041007–041015

    Article  Google Scholar 

  20. Shinoda W, DeVane R, Klein ML (2008) Soft Matter 4:2454–2462

    Article  CAS  Google Scholar 

  21. Shinoda W, DeVane R, Klein ML (2010) J Phys Chem B 114:6836–6849

    Article  CAS  Google Scholar 

  22. Thoren PE, Persson D, Esbjorner EK, Goksor M, Lincoln P, Norden B (2004) Biochemistry 43:3471–3489

    Article  CAS  Google Scholar 

  23. Parrinello M, Rahman A (1980) Phys Rev Lett 45:1196–1199

    Article  CAS  Google Scholar 

  24. Grest GS, Kremer K (1986) Phys Rev A 33:3628–3631

    Article  CAS  Google Scholar 

  25. Liu Y, Nagle J (2004) Phys Rev E 69:040901–040904

    Article  Google Scholar 

  26. Wimley WC, White SH (1996) Nat Struct Biol 3:842–848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kawamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kawamoto, S. et al. (2012). Free Energy of Cell-Penetrating Peptide through Lipid Bilayer Membrane: Coarse-Grained Model Simulation. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_29

Download citation

Publish with us

Policies and ethics