Skip to main content

Origin of Antiferromagnetism in Molecular and Periodic Systems in the Original Kohn–Sham Local Density Approximation

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

This study presents a solution to an issue which became prominent due to the discovery of copper (Cu) oxides in 1986, namely, whether LDA (local density approximation) can describe antiferromagnetism. From an early stage, many LDA band structure calculations failed to reproduce the insulating antiferromagnetic state. The Hubbard model predicts antiferromagnetism in a system under appropriate conditions. The author’s LDA calculations were performed for elongated hydrogen molecules comprising multiple atoms using the discrete variational (DV) molecular orbital method. The LDA employed is the original Kohn–Sham formalism, since the magnetic properties by GGA (generalized gradient approximation) are closer to the original Kohn–Sham results than those obtained by VWN (Vosko–Wilk–Nusair) approximation. The DV method, with a basis set of numerically calculated atomic orbitals, derived the antiferromagnetic state for hydrogen molecules at long interatomic separations but, when used for Cu oxide molecules, was seemingly unable to describe antiferromagnetism, where a well potential with a usual depth of about −1 Eh within an ionic radius was added solely to the potential for generating basis atomic orbitals of O2−. However, the author finally achieved the antiferromagnetism description via a reduced well potential depth following long parameter surveys. The calculation was generalized to a periodic system CaCuO2 using a method employing Bloch-type linear combinations of atomic orbitals with all electrons. Furthermore, we determined a spherically averaged well potential depth having originated from the Coulomb potential by the nucleus and electron clouds around O2− in a solid. The system revealed antiferromagnetic ordering due to a shallow well depth, and since the well for the anionic basis set is induced by the Coulomb potential in general, this method is applied to molecular orbital calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Néel L (1932) Ann Phys (Paris) 17:5–9

    Google Scholar 

  2. Néel L (1936) Ann Phys (Paris) 5:232–279

    Google Scholar 

  3. Néel L (1948) Ann Phys (Paris) 3:137–198

    Google Scholar 

  4. Landau L (1933) Phys Z Sowjet 4:675

    Google Scholar 

  5. Mott NF, Pierls R (1937) Proc Phys Soc Lond Ser A 49:72–73

    Article  Google Scholar 

  6. van Vleck JH (1937) Phys Rev 52:1178–1198

    Article  Google Scholar 

  7. Mott NF (1974) Metal-insulator transitions. Taylor & Francis, London

    Google Scholar 

  8. Shull CG, Smart JS (1949) Phys Rev 76:1256–1257

    Article  Google Scholar 

  9. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  10. Wigner E (1934) Phys Rev 46:1002–1011

    Article  CAS  Google Scholar 

  11. Nozières P, Pines D (1958) Phys Rev 111:442–454

    Article  Google Scholar 

  12. von Barth U, Hedin L (1972) J Phys C 5:1629–1642

    Article  Google Scholar 

  13. Gunnarson O, Lundqvist BI (1976) Phys Rev B 13:4274–4298

    Article  Google Scholar 

  14. Janak JF, Moruzzi VL, Williams AR (1975) Phys Rev B 12:1257–1261

    Article  CAS  Google Scholar 

  15. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  16. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  17. Bednorz JG, Müller KA (1986) Z Phys B 64:189–193

    Article  CAS  Google Scholar 

  18. Kobayashi N, Hiroi Z, Takano M (1997) J Solid State Chem 132:274–283

    Article  CAS  Google Scholar 

  19. Siegrist T, Zahurak SM, Murphy DW, Roth RS (1988) Nature 334:231–232

    Article  CAS  Google Scholar 

  20. Pickett WE (1989) Rev Mod Phys 61:433–512

    Article  CAS  Google Scholar 

  21. Hubbard J (1963) Proc R Soc A 276:238–257

    Article  Google Scholar 

  22. Hubbard J (1964) Proc R Soc A 277:237–259

    Article  Google Scholar 

  23. Hubbard J (1964) Proc R Soc A 281:401–419

    Article  Google Scholar 

  24. Anderson PW (1963) In: Seitz F, Turnbull D (eds) Solid state physics, vol 14. Academic Press, New York, p 99

    Google Scholar 

  25. Fukushima K (2000) J Phys Soc Jpn 69:1247–1248

    Article  CAS  Google Scholar 

  26. Fukushima K (2008) Adv Quantum Chem 54:47–60

    Article  CAS  Google Scholar 

  27. Ellis DE, Painter GS (1970) Phys Rev B 2:2887–2898

    Article  Google Scholar 

  28. Averill FW, Ellis DE (1973) J Chem Phys 59:6412–6418

    Article  CAS  Google Scholar 

  29. Rosén A, Ellis DE, Adachi H, Averill FW (1976) J Chem Phys 65:3629–3634

    Article  Google Scholar 

  30. Adachi H, Tsukada M, Satoko C (1978) J Phys Soc Jpn 45:875–883

    Article  CAS  Google Scholar 

  31. Slater JC (1951) Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  32. Slater JC (1974) The self-consistent field for molecules and solids, vol 4, Quantum theory of molecules and solids. McGraw-Hill, New York

    Google Scholar 

  33. Slater JC (1979) The calculation of molecular orbitals. Wiley, New York

    Google Scholar 

  34. Gáspár R (1954) Acta Phys Acad Sci Hung 3:263–286

    Article  Google Scholar 

  35. Herman F, Skillman S (1963) Atomic structure calculations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  36. Fukushima K (2011) Int J Quantum Chem 112:44–52

    Article  Google Scholar 

  37. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  39. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Martin RL, Illas F (1997) Phys Rev Lett 79:1539–1542

    Article  CAS  Google Scholar 

  43. Satoko C, Ohnishi S (1994) Density functional theory and its applications. Electronic state of molecules and clusters (in Japanese). Kodansha, Tokyo

    Google Scholar 

  44. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  45. The Chemical Society of Japan (eds) (2004) Kagaku binran (several editions of chemical handbook in Japanese). Maruzen, Tokyo

    Google Scholar 

  46. Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  47. Kawamura H (1968) Kotai butsurigaku (Solid state physics, in Japanese). Kyoritsu Shuppan, Tokyo

    Google Scholar 

  48. Ziman JM (1972) Principles of the theory of solid, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  49. Evjen HM (1932) Phys Rev 39:675–687

    Article  CAS  Google Scholar 

  50. Frank FC (1950) Philos Mag 41:1287–1289

    CAS  Google Scholar 

  51. Kittel C (1971) Introduction to solid state physics, 4th edn. Wiley, New York

    Google Scholar 

  52. Pauling L (1927) J Am Chem Soc 49:765–790

    Article  CAS  Google Scholar 

  53. Goldschmidt VM (1929) Trans Faraday Soc 25:253–283

    Article  CAS  Google Scholar 

  54. Vaknin D, Caignol E, Davies PK, Fischer JE, Johnston DC, Goshorn DP (1989) Phys Rev B 39:9122–9125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimichika Fukushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fukushima, K. (2012). Origin of Antiferromagnetism in Molecular and Periodic Systems in the Original Kohn–Sham Local Density Approximation. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_24

Download citation

Publish with us

Policies and ethics