Skip to main content

Quantum Decoherence at the Femtosecond Level in Liquids and Solids Observed by Neutron Compton Scattering

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

  • 1920 Accesses

Abstract

About 10 years ago, it was found that neutron scattering on hydrogen showed anomalously low cross sections in many materials when it was observed under Compton scattering conditions (i.e. with neutron energies larger than 10 eV, where the duration of the scattering process falls in the τ sc = 10−16 to 10−15 s range). The anomalies decreased with the neutron energy, which means that the cross sections approached normal values for long scattering times.

This phenomenon is interpreted here as due to an entanglement between the protons (because of their indistinguishability) during the scattering process, by which certain terms in the cross section are cancelled through the large zero-point motion of the protons. The anomalies disappear gradually as the proton states decohere in contact with the local environment. Fitted decoherence times range from 4•10−15 s for proton pairs in liquid hydrogen to 5•10−16 s in metal hydrides. For the proton pairs in water, the data are compared with a theoretical estimate for decoherence based on the influence of fluctuations in hydrogen bonding to nearby molecules.

The fast decoherence of locally prepared entangled states in condensed media studied here is compared with decoherence (in the 10−6 to 10−3 s range) in objects studied in quantum optics in high vacuum, with the disappearance of the superposition state in NH3 or ND3 molecules in dilute gases, and with the lifetime of superconducting qubits in solids (10−7 s) at low temperature.

In recent experiments, there are also indications for an energy shift in connection with the breaking of the n-p entanglement in neutron Compton scattering. Comments on this possibility will be given at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond JM, Haroche S (1996) Phys Rev Lett 77:4887

    Article  CAS  Google Scholar 

  2. Kuhr S, Gleyzes S, Guerlin C, Bemu J, Hoff UB, Degléglise S, Osnaghi S, Brune M, Raimonde J-M (2007) Appl Phys Lett 90:164101

    Article  Google Scholar 

  3. Hornberger K, Hackermüller L, Arndt M (2005) Phys Rev A 71:023601

    Article  Google Scholar 

  4. Nakamura Y, Pashkin YA, Tsai JS (1999) Nature 398:786

    Article  CAS  Google Scholar 

  5. Niskanen AO, Harrabi K, Yoshihara F, Lloyd S, Tsai JS (2007) Science 316:723

    Article  CAS  Google Scholar 

  6. Burkhard D, Koch RH, DiVincenzo DP (2004) Phys Rev B 69:064503

    Article  Google Scholar 

  7. Karlsson EB (1998) Phys Scripta T 76:179

    Article  Google Scholar 

  8. Karlsson EB, Chatzidimitriou-Dreismann CA, Abdul Redah T, Streffer RMF, Hjörvarsson B, Öhrmalm J, Mayers J (1999) Europhys Lett 46:617

    Article  CAS  Google Scholar 

  9. Chatzidimitriou-Dreismann CA, Abdul Redah T, Streffer RMF, Mayers J (1997) Phys Rev Lett 78:2839

    Article  Google Scholar 

  10. Sears VF (1984) Phys Rev B 30:44

    Article  CAS  Google Scholar 

  11. Reiter G, Silver R (1985) Phys Rev Lett 54:1047

    Article  CAS  Google Scholar 

  12. Karlsson EB (2012) Int J Quant Chem 112:587

    Article  CAS  Google Scholar 

  13. Lovesey SW (1984) Theory of neutron scattering from condensed matter. Clarendon, Oxford

    Google Scholar 

  14. Stock C, Cowley RA, Taylor JW, Bennington SM (2010) Phys Rev B 81:024303

    Article  Google Scholar 

  15. Chatzidimitriou-Dreismann CA, Abdul-Redah T (2004) Physica B 350:239

    Article  CAS  Google Scholar 

  16. Cooper MJ, Hitchcock AP, Chatzidimitriou-Dreismann CA (2008) Phys Rev Lett 100:043204

    Article  CAS  Google Scholar 

  17. Cowley RA, Mayers J (2006) J Phys Condens Matter 18:5291

    Article  CAS  Google Scholar 

  18. Karlsson EB, Chatzidimitriou-Dreismann CA, Abdul-Redah T, Hartmann O (2003) ISIS experimental report, RB 13245, Rutherford-Appleton Laboratory

    Google Scholar 

  19. Joos E, Zeh HZ (1985) Phys B 59:223

    Google Scholar 

  20. Karlsson EB (2003) Phys Rev Lett 78:2839

    Google Scholar 

  21. Karlsson EB (2004) Mod Phys Lett B 18:247

    Article  CAS  Google Scholar 

  22. Bratos S, Tarjus G, Diraison M, Leicknam J-C (1991) Phys Rev A 44:2745

    Article  CAS  Google Scholar 

  23. Abdul-Redah T, Krzystyniak M, Chatzidimitriou-Dreismann CA (2005) In: Akulin VM et al (eds) Decoherence, entanglement and information protection in complex quantum systems, NATO Science Series. Springer, Dordrecht

    Google Scholar 

  24. Chatzidimitriou-Dreismann CA, Abdul-Redah T, Mayers J (2002) Physica B 315:281

    Article  CAS  Google Scholar 

  25. Breuer H-P, Petruccione FP (2002) The theory of open quantum systems. Oxford University Press, Oxford

    Google Scholar 

  26. Hama J, Miyagi H (1973) Progress Thor Phys 50:1142

    Article  CAS  Google Scholar 

  27. Fillaux F, Cousson A, Keen D (2003) Phys Rev B 67:054301

    Article  Google Scholar 

  28. Chatzidimitriou-Dreismann CA, Mac E, Gray A, Blach TP (2011) AIP Advances 1:022118

    Article  Google Scholar 

  29. Schulman LS, Gaveau B (2006) Phys Rev Lett 97:240405

    Article  CAS  Google Scholar 

  30. Bennett CH (1982) Int J Theor Phys 21:905

    Article  CAS  Google Scholar 

  31. Chatzidimitriou-Dreismann et al. (2012) Nuclear instruments and methods in physics research, Sect. A 676:120

    Google Scholar 

Download references

Note Added in Proof

Very recent data on D2-scattering [31] at angles exceeding 100 degrees (shorter times) also indicate energy shifts in agreement with the prediction made in Fig. 22.14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Karlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Karlsson, E.B. (2012). Quantum Decoherence at the Femtosecond Level in Liquids and Solids Observed by Neutron Compton Scattering. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_22

Download citation

Publish with us

Policies and ethics