Skip to main content

The Dirac Electron: Spin, Zitterbewegung, the Compton Wavelength, and the Kinetic Foundation of Rest Mass

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

The Dirac equation, which was derived by combining, in a consistent manner, the relativistic invariance condition with the quantum superposition principle, has shown its fecundity by explaining the electron spin, predicting antimatter, and enabling Schrödinger’s trembling motion (Zitterbewegung). It has also yielded as expectation value for the electron speed the velocity of light. But the question has hardly been raised as to the effect of this intrinsic motion on the electron mass. In this chapter, we conjecture that the internal structure of the electron should consist of a massless charge describing, at light velocity, a vibrating motion in a domain defined by the Compton wavelength, the measured rest mass being generated by this very internal motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pullman B (1995) L’Atome dans l’Histoire de la Pensée Humaine. Fayard Ed., Paris

    Google Scholar 

  2. Noel Cottingham W, Greenwood DA (1998) Introduction to the Standard Model of Particle Physics. Cambridge University Press, Cambridge/New York

    Google Scholar 

  3. Feymann RP (1998) Quantum Electrodynamics. Addison-Wesley, Reading

    Google Scholar 

  4. Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1989) Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, New York

    Google Scholar 

  5. Dirac PAM (1958) The Principles of Quantum Mechanics, 1st edn 1930, 4th edn 1958. Clarendon Press, Oxford, Chaps. 11–12

    Google Scholar 

  6. de Broglie L (1934) L’Electron Magnétique: Théorie de Dirac. Hermann, Paris, Chaps. 9–22

    Google Scholar 

  7. Maruani J (1980) Magnetic resonance and related techniques. In: Becker P (ed) NATO ASI proceedings. Plenum, New York

    Google Scholar 

  8. Schrödinger E (1930/1931) Sitzungsber Preuss Akad Wiss Berlin, Phys-Math Kl 24:418–428; 25:63–72

    Google Scholar 

  9. Klein O (1929) Z Phys 53:157 ff

    Article  CAS  Google Scholar 

  10. Szymanowski C, Keitel CH, Maquet A (1999) Laser Phys 9:133–137

    CAS  Google Scholar 

  11. Barut AO, Bracken AJ (1981) Phys Rev D 24:3333 ff; Barut AO, Zangui N (1984) Phys Rev Lett 52:2009–2012

    Google Scholar 

  12. Haisch B, Rueda A, Puthoff HE (1994) Phys Rev A 49:678–694

    Article  Google Scholar 

  13. Infeld L, Schild AE (1945/1946) Phys Rev 68:250–272; 70:410–425

    Google Scholar 

  14. Chapman TC, Leiter DJ (1976) Am J Phys 44(1976):858–862; Parker L, Pimentel LO (1982) Phys Rev D 25(1982):3180–3190

    Google Scholar 

  15. Sachs M (1986) Quantum Mechanics from General Relativity: an Approximation for a Theory of Inertia. Reidel, Dordrecht

    Book  Google Scholar 

  16. Brändas E (2009) The equivalence principle from a quantum-mechanical perspective. In: Piecuch P et al (eds) Advances in the theory of atomic and molecular systems, PTCP 19. Springer, London, pp 73–92

    Chapter  Google Scholar 

  17. Kursunoglu BN, Mintz SL, Perlmutter A (eds) (1998) Physics of Mass. Kluwer/Plenum, Dordrecht/New York

    Google Scholar 

  18. Eddington AS (1920) Space, Time, and Gravitation. Cambridge University Press, Cambridge, Part B, Section IV-40

    Google Scholar 

  19. Misner CW, Thorne KS, Wheeler JA (1995) Gravitation. Freeman & Co., New York

    Google Scholar 

  20. Halbwachs F (1960) Recherches sur la Dynamique du Corpuscule Tournant Relativiste et sur l’Hydrodynamique Relativiste des Fluides Dotés d’un Spin. Thesis, Gauthier-Villars, Paris

    Google Scholar 

  21. Ashworth DG, Davies PA (1979) Transformations between rotating and inertial frames of reference. J Phys A Math Gen 12:1425–1440

    Article  Google Scholar 

  22. Rizzi G, Ruggiero ML (2004) Relativity in Rotating Frames. Kluwer, Dordrecht

    Google Scholar 

  23. de Broglie L (1961) Introduction à la Nouvelle Théorie des Particules. Gauthier-Villars, Paris, Chap. 3. See also (1954) Théorie Générale des Particules à Spin: Méthode de Fusion. Gauthier-Villars, Paris

    Google Scholar 

  24. Fujiwara S (1921) In: Lometa. Fujiwara effect. Everything.com

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Maruani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Maruani, J. (2012). The Dirac Electron: Spin, Zitterbewegung, the Compton Wavelength, and the Kinetic Foundation of Rest Mass. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_2

Download citation

Publish with us

Policies and ethics