Skip to main content

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 18))

  • 863 Accesses

Abstract

Radiation treatment of central nervous system (CNS) metastases, particularly brain metastasis, is changing. The role of radiation for intraaxial disease was originally limited to palliation. However, now there is an increasing expectation by both patients and physicians to integrate radiotherapy in an overall strategy for eradication of disease. Recent innovations in radiobiology and technical advances in radiotherapy have proven beneficial to many extracranial sites. Nevertheless, these advances have lagged behind in the treatment of brain and spinal metastases and have not kept pace with changing expectations. We aim to explain the scientific basis of radiotherapy for CNS metastasis, current treatment options and techniques, controversies, and future goals for potential improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall E, Giaccia A (2005) Radiobiology for the radiologist, 2nd edn. Lippencott Williams and Wilkins, Philadelphia

    Google Scholar 

  2. Conforth M, Bedford J (1983) X-ray induced breakage and rejoining of human interphase chromosomes. Science 222:1141–1143

    Article  Google Scholar 

  3. Bedi A, Barber J, Bedi G et al (1995) BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86:1148–1158

    PubMed  CAS  Google Scholar 

  4. Giusti A, Raimondi M, Ravagnan G et al (1998) Human cell membrane oxidative damage induced by single and fractionated doses of ionizing radiation: a fluorescence spectroscopy study. Int J Radiat Biol 74:595–605

    Article  PubMed  CAS  Google Scholar 

  5. Maisin J, Van Gorp U, de Saint-Georges L (1982) The ultrastructure of the lung after exposure to ionizing radiation as seen by transmission and scanning electron microscopy. Scan Electron Microsc Pt 1:403–412

    Google Scholar 

  6. Azzam E, de Toledo S, Little J (2003) Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Res 63:7128–7135

    PubMed  CAS  Google Scholar 

  7. Dayal D, Martin S, Owens K et al (2009) Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation. Radiat Res 172:737–745

    Article  PubMed  CAS  Google Scholar 

  8. Strandquist M (1944) Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung. Acta Radiol 55(supp):1–30

    Google Scholar 

  9. Ang K, Peters L, Weber R et al (1994) Postoperative radiotherapy for cutaneous melanoma of the head and neck region. Int J Radiat Oncol Biol Phys 30:795–798

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  PubMed  CAS  Google Scholar 

  11. Lawrence Y, Li X, Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–S27

    Article  PubMed  Google Scholar 

  12. Powers W, Tolmach L (1963) A multicomponent x-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature 197:710–711

    Article  PubMed  CAS  Google Scholar 

  13. Mitchell J, Russo A, Kinsella T et al (1986) The use of nonhypoxic cell sensitizers in radiobiology and radiotherapy. Int J Radiat Oncol Biol Phys 12:1513–1518

    Article  PubMed  CAS  Google Scholar 

  14. Rowinsky E (1999) Novel radiation sensitizers targeting tissue hypoxia. Oncology (Williston Park) 13(Suppl 5):61–70

    CAS  Google Scholar 

  15. Hoskin P, Saunders M, Dische S (1999) Hypoxic radiosensitizers in radical radiotherapy for patients with bladder carcinoma: hyperbaric oxygen, misonidazole, and accelerated radiotherapy, carbogen, and nicotinamide. Cancer 86:1322–1328

    Article  PubMed  CAS  Google Scholar 

  16. Hoskin P, Rojas A, Saunders M (2009) Carbogen and nicotinamide in locally advanced bladder cancer: early results of a phase-III randomized trial. Radiother Oncol 91:120–125

    Article  PubMed  CAS  Google Scholar 

  17. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  PubMed  CAS  Google Scholar 

  18. Rodrigues G, Yartsev S, Tay KY et al (2012) A phase II multi-institutional study assessing simultaneous in-field boost helical tomotherapy for 1–3 brain metastases. Radiat Oncol 7:42

    Article  PubMed  Google Scholar 

  19. Wong WW, Schild SE, Sawyer TE et al (1996) Analysis of outcome in patients reirradiated for brain metastases. Int J Radiat Oncol Biol Phys 34:585–590

    Article  PubMed  CAS  Google Scholar 

  20. Pollack IF (2010) Neuro-oncology: therapeutic benefits of reirradiation for recurrent brain tumors. Nat Rev Neurol 6:533–535

    Article  PubMed  Google Scholar 

  21. Colevas A, Brown J, Hahn S et al (2003) Development of investigational radiation modifiers. J Natl Cancer Inst 95:646–651

    Article  PubMed  CAS  Google Scholar 

  22. Aoyama H, Tago M, Kato N et al (2007) Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 68:1388–1395

    Article  PubMed  Google Scholar 

  23. Coderre JA, Morris GM, Micca PL et al (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503

    Article  PubMed  CAS  Google Scholar 

  24. Doolittle ND, Anderson CP, Bleyer WA et al (2001) Importance of dose intensity in neuro-oncology clinical trials: summary report of the sixth annual meeting of the blood–brain barrier disruption consortium. Neuro Oncol 3:46–54

    PubMed  CAS  Google Scholar 

  25. DeAngelis LM, Delattre JY, Posner JB (1989) Radiation-induced dementia in patients cured of brain metastases. Neurology 39:789–796

    Article  PubMed  CAS  Google Scholar 

  26. Rasey J, Krohn K, Menard T et al (1986) Comparative biodistribution and radioprotection studies with three radioprotective drugs in mouse tumors. Int J Radiat Oncol Biol Phys 12:1487–1490

    Article  PubMed  CAS  Google Scholar 

  27. Dote H, Cerna D, Burgan W et al (2005) Enhancement of an in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine. Clin Cancer Res 11:4571–4579

    Article  PubMed  CAS  Google Scholar 

  28. Camphausen K, Tofilon P (2007) Inhibition of Hsp90: a multitarget approach to radiosensitization. Clin Cancer Res 13(Pt 1):4326–4330

    Article  PubMed  CAS  Google Scholar 

  29. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  PubMed  CAS  Google Scholar 

  30. Brown PD, Brown CA, Pollock BE et al (2002) Stereotactic radiosurgery for patients with “radioresistant” brain metastases. Neurosurgery 51:656–665

    PubMed  Google Scholar 

  31. Sadikov E, Bezjak A, Yi QL et al (2007) Value of whole brain re-irradiation for brain metastases-single centre experience. Clin Oncol (R Coll Radiol) 19:532–538

    Article  CAS  Google Scholar 

  32. Steel G, Peckham M (1979) Exploitable mechanisms in combined radiotherapy chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    Article  PubMed  CAS  Google Scholar 

  33. Stupp R, Mason W, van den Bent M et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  34. Olson JJ, Paleologos NA, Gaspar LE et al (2010) The role of emerging and investigational therapies for metastatic brain tumors: a systematic review and evidence-based clinical practice guideline of selected topics. J Neurooncol 96:115–142

    Article  PubMed  CAS  Google Scholar 

  35. Doolittle ND, Peereboom DM, Christoforidis GA et al (2007) Delivery of chemotherapy and antibodies across the blood–brain barrier and the role of chemoprotection, in primary and metastatic brain tumors: report of the eleventh annual blood–brain barrier consortium meeting. J Neurooncol 81:81–91

    Article  PubMed  Google Scholar 

  36. Peters W 3rd, Liu P, Barrett R 2nd et al (2000) Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 18:1606–1613

    PubMed  CAS  Google Scholar 

  37. Whitney C, Sause W, Bundy B et al (1999) Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative Para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol 17:1339–1348

    PubMed  CAS  Google Scholar 

  38. Keys H, Bundy B, Stehman F et al (1999) Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 340:1154–1161

    Article  PubMed  CAS  Google Scholar 

  39. Morris M, Eifel P, Lu J et al (1999) Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 340:1137–1143

    Article  PubMed  CAS  Google Scholar 

  40. DeAngelis LM, Seiferheld W, Schold SC et al (2002) Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93–10. J Clin Oncol 20:4643–4648

    Article  PubMed  Google Scholar 

  41. Galetta D, Gebbia V, Silvestris N et al (2011) Cisplatin, fotemustine and whole-brain radiotherapy in non-small cell lung cancer patients with asymptomatic brain metastases: a multicenter phase II study of the Gruppo Oncologico Italia Meridionale (GOIM 2603). Lung Cancer 72:59–63

    Article  PubMed  CAS  Google Scholar 

  42. Glantz MJ, Choy H, Kearns CM et al (1995) Weekly, outpatient paclitaxel and concurrent cranial irradiation in adults with brain tumors: preliminary results and promising directions. Semin Oncol 22:26–32

    PubMed  CAS  Google Scholar 

  43. Wasserman T, Brizel D, Henke M et al (2005) Influence of intravenous amifostine on xerostomia, tumor control, and survival after radiotherapy for head-and- neck cancer: 2-year follow-up of a prospective, randomized, phase III trial. Int J Radiat Oncol Biol Phys 63:985–990

    Article  PubMed  CAS  Google Scholar 

  44. Nieder C, Andratschke NH, Wiedenmann N et al (2004) Prevention of radiation-induced central nervous system toxicity: a role for amifostine? Anticancer Res 24:3803–3809

    PubMed  CAS  Google Scholar 

  45. Mohindra P, Sinha RN, Andrews RJ et al (2012) Non-cytotoxic radiosensitizers in brain radiotherapy: journey till the first decade of this millennium. Curr Cancer Drug Targets 12:260–278

    Article  PubMed  CAS  Google Scholar 

  46. Bull E, Dote H, Brady K et al (2004) Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin Cancer Res 10:8077–8084

    Article  PubMed  CAS  Google Scholar 

  47. Camphausen K, Tofilon P (2007) Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 25:4051–4056

    Article  PubMed  CAS  Google Scholar 

  48. Chinnaiyan P, Cerna D, Burgan W et al (2008) Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin Cancer Res 14:5410–5415

    Article  PubMed  CAS  Google Scholar 

  49. Baschnagel A, Russo A, Burgan W et al (2009) Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther 8:1589–1595

    Article  PubMed  CAS  Google Scholar 

  50. Devito N, Yu M, Chen R et al (2011) Retrospective study of patients with brain metastases from melanoma receiving concurrent whole-brain radiation and temozolomide. Anticancer Res 31:4537–4543

    PubMed  CAS  Google Scholar 

  51. Besse B, Lasserre SF, Compton P et al (2010) Bevacizumab safety in patients with central nervous system metastases. Clin Cancer Res 16:269–278

    Article  PubMed  CAS  Google Scholar 

  52. Ménard C, Johann D, Lowenthal M et al (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Res 66:1844–1850

    Article  PubMed  CAS  Google Scholar 

  53. Camphausen K, Moses M, Ménard C et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63:1990–1993

    PubMed  CAS  Google Scholar 

  54. Kamrava M, Bernstein M, Camphausen K et al (2009) Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: the Three Musketeers or just another quixotic combination? Mol Biosyst 5:1262–1270

    Article  PubMed  CAS  Google Scholar 

  55. Uchida A, Mizutani Y, Nagamuta M et al (1989) Effects of X-ray irradiation on natural killer (NK) cell system. I. Elevation of sensitivity of tumor cells and lytic function of NK cells. Immunopharmacol Immunotoxicol 11:507–519

    Article  PubMed  CAS  Google Scholar 

  56. Younes E, Haas G, Dezso B et al (2004) Local tumor irradiation augments the response to IL-2 therapy in a murine renal adenocarcinoma. Cell Immunol 165:243–251

    Article  Google Scholar 

  57. Dezso B, Haas G, Hamzavi F et al (1996) The mechanism of local tumor irradiation combined with interleukin 2 therapy in murine renal carcinoma: histological evaluation of pulmonary metastases. Clin Cancer Res 2:1543–1552

    PubMed  CAS  Google Scholar 

  58. Garnett C, Palena C, Chakraborty M et al (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64:7985–7994

    Article  PubMed  CAS  Google Scholar 

  59. Ferrara T, Hodge J, Gulley J (2009) Combining radiation and immunotherapy for synergistic antitumor therapy. Curr Opin Mol Ther 11:37–42

    PubMed  CAS  Google Scholar 

  60. Wersall P, Blomgren H, Pisa P et al (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45:493–497

    Article  PubMed  Google Scholar 

  61. Nesslinger N, Sahota R, Stone B et al (2007) Standard treatments induce antigen-specific immune responses in prostate cancer. Clin Cancer Res 13:1493–1502

    Article  PubMed  CAS  Google Scholar 

  62. Okawa T, Kita M, Arai T et al (1989) Phase II randomized clinical trial of LC908 concurrently used with radiation in the treatment of carcinoma of the uterine cervix. Its effect on tumor reduction and histology. Cancer 64:1769–1776

    Article  PubMed  CAS  Google Scholar 

  63. Gulley J, Arlen P, Bastian A et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11:3353–3362

    Article  PubMed  CAS  Google Scholar 

  64. Chi K, Liu S, Li C et al (2005) Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother 28:129–135

    Article  PubMed  Google Scholar 

  65. Margolin KA, Di Giacomo AM, Maio M (2010) Brain metastasis in melanoma: clinical activity of CTLA-4 antibody therapy. Semin Oncol 37:468–472

    Article  PubMed  CAS  Google Scholar 

  66. Beclere A (1926) Les dangers a eviter dans la radiotherapie des tumeurs de la Cavite cranio-rachidienne. J Radiol 10:556–563

    Google Scholar 

  67. Hsu YK, Chang CP, Hsieh CK et al (1936) Effect of roentgen rays on the permeability of the barrier between blood and cerebrospinal fluid. Chin J Physiol 10:379–390

    CAS  Google Scholar 

  68. Levin VA, Edwards MS, Byrd A (1979) Quantitative observations of the acute effects of X-irradiation on brain capillary permeability: part I. Int J Radiat Oncol Biol Phys 5:1627–1631

    Article  PubMed  CAS  Google Scholar 

  69. Jarden JO, Dhawan V, Poltorak A et al (1989) Positron emission tomographic measurement of blood-to-brain and blood-to-tumor transport of 82Rb: the effect of dexamethasone and whole-brain radiation therapy. Ann Neurol 18:636–646

    Article  Google Scholar 

  70. Trnovec T, Kállay Z, Bezek S (1990) Effects of ionizing radiation on the blood brain barrier permeability to pharmacologically active substances. Int J Radiat Oncol Biol Phys 19:1581–1587

    Article  PubMed  CAS  Google Scholar 

  71. Tsao MN, Lloyd N, Wong RK (2012) Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst Rev 4

    Google Scholar 

  72. Alasil T, Khazai B, Loredo L (2011) Renal cell carcinoma metastasis to the ciliary body responds to proton beam radiotherapy: a case report. J Med Case Reports 5:345

    Article  Google Scholar 

  73. Kramer S, Henrickson F, Zelen M et al (1977) Therapeutic trials in the management of metastatic brain tumors by different time/dose fraction schemes of radiation therapy. JNCI 46:213–221

    CAS  Google Scholar 

  74. Borgelt B, Gelber R, Kramer S et al (1980) The palliation of brain metastases: final results of the first two studies by the Radiation Oncology Group. Int J Radiat Oncol Biol Phys 6:1–9

    Article  PubMed  CAS  Google Scholar 

  75. Coia LR (1992) The role of radiation therapy in the treatment of brain metastases. Int J Radiat Oncol Biol Phys 23:229–238

    Article  PubMed  CAS  Google Scholar 

  76. Shibamoto Y, Baba F, Oda K et al (2008) Incidence of brain atrophy and decline in mini-mental state examination score after whole-brain radiotherapy in patients with brain metastases: a prospective study. Int J Radiat Oncol Biol Phys 72:1168–1173

    Article  PubMed  Google Scholar 

  77. Wefel JS, Lenzi R, Theriault R et al (2004) ‘Chemobrain’ In breast carcinoma?: a prologue. Cancer 101:466–475

    Article  PubMed  Google Scholar 

  78. Regine WF, Scott C, Murray K et al (2001) Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. Accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91–04. Int J Radiat Oncol Biol Phys 51:711–717

    Article  PubMed  CAS  Google Scholar 

  79. Meyers CA, Smith JA, Bezjak A et al (2004) Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol 22:157–165

    Article  PubMed  CAS  Google Scholar 

  80. Mehta MP, Rodrigus P, Terhaard CH et al (2003) Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol 21:2529–2536

    Article  PubMed  CAS  Google Scholar 

  81. Li J, Bentzen SM, Renschler M et al (2007) Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol 25:1260–1266

    Article  PubMed  Google Scholar 

  82. Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489

    Article  PubMed  CAS  Google Scholar 

  83. Gaspar L, Scott C, Rotman M et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Oncology Group (RTOG) brain metastasis trials. Int J Radiat Oncol Biol Phys 37:745–751

    Article  PubMed  CAS  Google Scholar 

  84. Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: a phase III results of the RTOG 9805 randomised trial. Lancet 363:1665–1672

    Article  PubMed  Google Scholar 

  85. Patchell RA, Tibbs PA, Walsh JW et al (1990) A randomized trial of surgery in the treatment of single metastasis to the brain. N Engl J Med 322:494–500

    Article  PubMed  CAS  Google Scholar 

  86. El Kamar FG, Posner JB (2004) Brain metastases. Semin Neurol 24:347–362

    Article  PubMed  Google Scholar 

  87. Mintz AH, Kestle J, Rathbone MP et al (1996) A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer 78:1470–1476

    Article  PubMed  CAS  Google Scholar 

  88. Patchell RA (2003) The management of brain metastases. Cancer Treat Rev 29:533–540

    Article  PubMed  Google Scholar 

  89. Slotman B, Faivre-Finn C, Kramer G et al (2007) Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med 357:664–672

    Article  PubMed  CAS  Google Scholar 

  90. Gore EM, Bae K, Wong SJ et al (2011) Phase III comparison of prophylactic cranial irradiation versus observation in patients with locally advanced non-small-cell lung cancer: primary analysis of Radiation Therapy Oncology Group study RTOG 0214. J Clin Oncol 29:272–278

    Article  PubMed  Google Scholar 

  91. Le Péchoux C, Dunant A, Senan S et al (2009) Standard-dose versus higher-dose prophylactic cranial irradiation (PCI) in patients with limited-stage small-cell lung cancer in complete remission after chemotherapy and thoracic radiotherapy (PCI 99–01, EORTC 22003–08004, RTOG 0212, and IFCT 99–01): a randomised clinical trial. Lancet Oncol 10:467–474

    Article  PubMed  Google Scholar 

  92. Van Oosterhout AG, Boon PJ, Houx PJ et al (1995) Follow-up of cognitive functioning in patients with small-cell lung cancer. Int J Radiat Oncol Biol Phys 31:911–914

    Article  PubMed  Google Scholar 

  93. Sun A, Bae K, Gore EM et al (2011) Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. Clin Oncol 29:279–286

    Article  Google Scholar 

  94. Le Péchoux C, Laplanche A, Faivre-Finn C et al (2011) Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003–08004, RTOG 0212 and IFCT 99–01). Ann Oncol 22:1154–1163

    Article  PubMed  Google Scholar 

  95. Kondziolka D, Patel A, Lunsford LD et al (1999) Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 45:427–434

    Article  PubMed  CAS  Google Scholar 

  96. Flickinger JC, Kondziolka D (1996) Radiosurgery instead of resection for solitary brain metastasis: the gold standard redefined. Int J Radiat Oncol Biol Phys 35:185–186

    Article  PubMed  CAS  Google Scholar 

  97. Muacevic A, Kreth FW, Horstmann GA et al (1999) Surgery and radiotherapy compared with gamma knife radiosurgery in the treatment of solitary cerebral metastases of small diameter. J Neurosurg 91:35–43

    Article  PubMed  CAS  Google Scholar 

  98. Jagannathan J, Bourne TD, Schlesinger D et al (2010) Clinical and pathological characteristics of brain metastasis resected after failed radiosurgery. Neurosurgery 66:208–217

    Article  PubMed  Google Scholar 

  99. Noordijk EM, Vecht CJ, Haaxma-Reiche H et al (1994) The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys 29:711–717

    Article  PubMed  CAS  Google Scholar 

  100. Haider TK, el-Khatib EE (1995) Differential scatter integration in regions of electronic non-equilibrium. Phys Med Biol 40:31–43

    Article  PubMed  CAS  Google Scholar 

  101. Sneed PK, Suh JH, Goetsch SJ et al (2002) A multi-institutional review of radiosurgery alone vs. Radiosurgery with whole brain radiotherapy as the initial management of brain metastases. Int J Radiat Oncol Biol Phys 53:519–526

    Article  PubMed  Google Scholar 

  102. Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044

    Article  PubMed  Google Scholar 

  103. Stafford SL, Pollock BE, Foote RL et al (2001) Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery 49:1029–1037

    PubMed  CAS  Google Scholar 

  104. Yamada Y, Lovelock DM, Yenice KM et al (2005) Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys 62:53–61

    Article  PubMed  Google Scholar 

  105. Abraham JL (2004) Assessment and treatment of patients with malignant spinal cord compression. J Support Oncol 2:377–401

    Google Scholar 

  106. Patchell RA, Tibbs PA, Regine WF et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomized trial. Lancet 366:643–648

    Article  PubMed  Google Scholar 

  107. Rades D, Stalpers LJ, Veninga T et al (2005) Evaluation of five radiation schedules and prognostic factors for metastatic spinal cord compression. J Clin Oncol 23:3366–3375

    Article  PubMed  Google Scholar 

  108. Helweg-Larsen S (1996) Clinical outcome in metastatic spinal cord compression. A prospective study of 153 patients. Acta Neurol Scand 94:269–275

    Article  PubMed  CAS  Google Scholar 

  109. Chang EL, Shiu AS, Lii MF et al (2004) Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 59:1288–1294

    Article  PubMed  Google Scholar 

  110. Ryu S, Rock J, Rosenblum M et al (2004) Patterns of failure after single-dose radiosurgery for spinal metastasis. J Neurosurg 101:402–405

    Article  PubMed  Google Scholar 

  111. Rock JP, Ryu S, Yin FF et al (2004) The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors. J Neurooncol 69:319–334

    Article  PubMed  Google Scholar 

  112. Mehta M, Noyes W, Craig B et al (1997) A cost-effectiveness and cost-utility analysis of radiosurgery vs. Resection for single-brain metastases. Int J Radiat Oncol Biol Phys 39:445–454

    Article  PubMed  CAS  Google Scholar 

  113. Lal LS, Byfield SD, Chang EL et al (2012) Cost-effectiveness analysis of a randomized study comparing radiosurgery with radiosurgery and whole brain radiation therapy in patients with 1 to 3 brain metastases. Am J Clin Oncol 35:45–50

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeeDee Smart M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smart, D. (2012). Radiation Therapy of CNS Metastases. In: Palmieri, D. (eds) Central Nervous System Metastasis, the Biological Basis and Clinical Considerations. Cancer Metastasis - Biology and Treatment, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5291-7_9

Download citation

Publish with us

Policies and ethics