Skip to main content

On the Advantages and Drawbacks of A Posteriori Error Estimation for Fourth-Order Elliptic Problems

  • Chapter
Book cover Numerical Methods for Differential Equations, Optimization, and Technological Problems

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 27))

  • 1925 Accesses

Abstract

In this survey contribution, we present and compare, from the viewpoint of adaptive computation, several recently published error estimation procedures for the numerical solution of biharmonic and some further fourth order elliptic problems mostly in 2D. In the hp-adaptive finite element method, there are two possibilities to assess the error of the computed solution a posteriori: to construct a classical analytical error estimate or to obtain a more accurate reference solution by the same procedure as the approximate solution and, from it, the computational error estimate. For the lack of space, we sometimes only refer to the notation introduced in the papers quoted. The complete hypotheses and statements of the theorems presented should also be looked for there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, New York

    Book  MATH  Google Scholar 

  2. Babuška I, Rheinboldt WC (1978) Error estimates for adaptive finite element computations. SIAM J Numer Anal 15(4):736–754

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška I, Rheinboldt WC (1978) A posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615

    Article  MATH  Google Scholar 

  4. Babuška I, Strouboulis T (2001) The finite element method and its reliability. Clarendon Press, New York

    Google Scholar 

  5. Babuška I, Whiteman JR, Strouboulis T (2011) Finite elements. An introduction to the method and error estimation. Oxford University Press, Oxford

    Google Scholar 

  6. Beirão da Veiga L, Niiranen J, Stenberg R (2007) A posteriori error estimates for the Morley plate bending element. Numer Math 106(2):165–179

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi F, Raviart PA (1977) Mixed finite element methods for 4th order elliptic equations. In: Miller JJH (ed) Topics in numerical analysis III: proceedings of the royal Irish academy conference on numerical analysis. Academic Press, London, pp 33–56

    Google Scholar 

  8. Charbonneau A, Dossou K, Pierre R (1997) A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem. Numer Methods Partial Differ Equ 13(1):93–111

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  10. Ciarlet PG, Raviart P-A (1974) A mixed finite element method for the biharmonic equation. In: de Boor C (ed) Mathematical aspects of finite elements in partial differential equations. Proceedings of a symposium conducted by the mathematics research center, the university of Wisconsin–Madison, April 1–3, 1974. Academic Press, New York, pp 125–145

    Google Scholar 

  11. Karátson J, Korotov S (2009) Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems. Appl Math 54(4):297–336

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu K, Qin X (2007) A gradient recovery-based a posteriori error estimators for the Ciarlet-Raviart formulation of the second biharmonic equations. Appl Math Sci 1(21–24):997–1007

    MathSciNet  MATH  Google Scholar 

  13. Neittaanmäki P, Repin S (2004) Reliable methods for computer simulation: error control and a posteriori estimates. Elsevier, Amsterdam

    MATH  Google Scholar 

  14. Pomeranz SB (1995) A posteriori finite element method error estimates for fourth-order problems. Commun Numer Methods Eng 11(3):213–226

    Article  MathSciNet  MATH  Google Scholar 

  15. Rannacher R (1979) On nonconforming and mixed finite element method for plate bending problems. The linear case. RAIRO Anal Numér 13(4):369–387

    MathSciNet  MATH  Google Scholar 

  16. Repin S (2008) A posteriori estimates for partial differential equations. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  17. Segeth K (2010) A review of some a posteriori error estimates for adaptive finite element methods. Math Comput Simul 80(8):1589–1600

    Article  MathSciNet  MATH  Google Scholar 

  18. Vejchodský T (2006) Guaranteed and locally computable a posteriori error estimate. IMA J Numer Anal 26(3):525–540

    Article  MathSciNet  MATH  Google Scholar 

  19. Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Stuttgart

    MATH  Google Scholar 

  20. Wang M, Zhang W (2008) Local a priori and a posteriori error estimate of TQC9 element for the biharmonic equation. J Comput Math 26(2):196–208

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant Agency of the Academy of Sciences of the Czech Republic under Grant IAA100190803 and by the Academy of Sciences of the Czech Republic under Research Plan AV0Z10190503 of the Institute of Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Segeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Segeth, K. (2013). On the Advantages and Drawbacks of A Posteriori Error Estimation for Fourth-Order Elliptic Problems. In: Repin, S., Tiihonen, T., Tuovinen, T. (eds) Numerical Methods for Differential Equations, Optimization, and Technological Problems. Computational Methods in Applied Sciences, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5288-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5288-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5287-0

  • Online ISBN: 978-94-007-5288-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics