Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 27))

  • 1896 Accesses

Abstract

When Gaussian distributed inputs, representing model parameters with some measurement error, are mapped through certain mechanical vibration models, the corresponding output probability distribution exhibits an approximately logarithmic data value distribution (in the histogram sense) with a high dynamic range (HDR). We look at applying tone mapping techniques from HDR photography to produce a low dynamic range, visual contrast preserving representation of such high dynamic range mathematical functions—thus enabling HDR plotting. This makes it possible to visualize HDR functions, displaying their structure in a clear manner on standard low dynamic range media such as computer screens and print. The advantages over simple logarithmic scaling are the visual contrast preservation and data adaptivity. Comparing to histogram equalization, the present approach has the advantage of not exaggerating small contrasts. Three methods are suggested and demonstrated on two mechanical vibration problems: transverse waves in a classical vibrating string, and the dynamic out-of-plane behaviour of an axially travelling panel submerged in axial potential flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SAVU, Sample-based Analysis and Visualization of Uncertainty: https://yousource.it.jyu.fi/savu/codes/ Link cited 13 Jan 2012.

  2. 2.

    Strictly speaking, in the case of data-adaptive histogram remappers, if some of the histogram bins are empty, there may be a flat region in the mapping function. In this case the mapping is not globally one-to-one. However, since such regions contain no samples in the data, for the existing data it is one-to-one.

  3. 3.

    Files hdr*.m in https://yousource.it.jyu.fi/savu/codes/. Link cited 13 Jan 2012.

  4. 4.

    Similar ideas were explored ten years earlier in a medical imaging context by [38]; however, we use [28] since it explicitly provides an algorithm.

  5. 5.

    According to [18], root-taking is a popular naïve approach.

References

  1. Abanoz B, Wang M (2008) A review of high dynamic range imaging on static scenes. Technical report 2008-04, Boston University

    Google Scholar 

  2. Ashikhmin M (2002) A tone mapping algorithm for high contrast images. In: Proceedings of the 13th eurographics workshop on rendering, pp 145–156. The Eurographics Association

    Google Scholar 

  3. Banichuk N, Jeronen J, Neittaanmäki P, Tuovinen T (2010) Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid. J Fluids Struct 26(2):274–291. doi:10.1016/j.jfluidstructs.2009.09.006

    Article  Google Scholar 

  4. Banichuk N, Jeronen J, Neittaanmäki P, Tuovinen T (2011) Dynamic behaviour of an axially moving plate undergoing small cylindrical deformation submerged in axially flowing ideal fluid. J Fluids Struct 27(7):986–1005. doi:10.1016/j.jfluidstructs.2011.07.004

    Article  Google Scholar 

  5. Beachkofski BK, Grandhi R (2002) Improved distributed hypercube sampling. In: Proceedings of the 43rd conference AIAA/ASME/ASCE/AHS/ASC on structures, dynamics and materials. Paper AIAA-2002-1274

    Google Scholar 

  6. Bisplinghoff RL, Ashley H (1975) Principles of aeroelasticity, 2nd edn. Dover, New York

    Google Scholar 

  7. Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38(5):2916–2957

    Article  MathSciNet  MATH  Google Scholar 

  8. Chacón JE, Duong T (2010) Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices. Test 19(2):375–398

    Article  MathSciNet  MATH  Google Scholar 

  9. Cox SE, Booth DT (2009) Shadow attenuation with high dynamic range images. Environ Monit Assess 158(1–4):231–241

    Article  Google Scholar 

  10. Debevec P (1998) Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques (SIGGRAPH’98). ACM, New York, pp 189–198

    Chapter  Google Scholar 

  11. Debevec P, Malik J (1997) Recovering high dynamic range radiance maps from photographs. In: ACM SIGGRAPH 2008 classes (SIGGRAPH’08). ACM, New York. Article No. 31,

    Google Scholar 

  12. Devlin K (2002) A review of tone reproduction techniques. Technical report CSTR-02-005, University of Bristol

    Google Scholar 

  13. Drago F, Martens W, Myszkowski K, Seidel H-P (2002) Perceptual evaluation of tone mapping operators with regard to similarity and preference. Research report MPI-I-2002-4-002, Max-Planck-Institut für Informatik

    Google Scholar 

  14. Drago F, Myszkowski K, Annen T, Chiba N (2003) Adaptive logarithmic mapping for displaying high contrast scenes. Comput Graph Forum 22(3):419–426. doi:10.1111/1467-8659.00689

    Article  Google Scholar 

  15. Duan J, Bressan M, Dance C, Qiu G (2010) Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recognit 43(5):1847–1862. doi:10.1016/j.patcog.2009.12.006

    Article  Google Scholar 

  16. Duong T, Hazelton ML (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. J Nonparametr Stat 15(1):17–30

    Article  MathSciNet  MATH  Google Scholar 

  17. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques (SIGGRAPH’02). ACM, New York, pp 257–266

    Chapter  Google Scholar 

  18. Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques (SIGGRAPH’02). ACM, New York, pp 249–256

    Chapter  Google Scholar 

  19. Finlayson G, Hordley S, Schaefer G, Tian GY (2005) Illuminant and device invariant colour using histogram equalisation. Pattern Recognit 38(2):179–190. doi:10.1016/j.patcog.2004.04.010

    Article  Google Scholar 

  20. Gatta C, Rizzi A, Marini D (2007) Perceptually inspired HDR images tone mapping with color correction. Int J Imaging Syst Technol 17(5):285–294

    Article  Google Scholar 

  21. Goodnight N, Wang R, Woolley C, Humphreys G (2003) Interactive time-dependent tone mapping using programmable graphics hardware. In: Proceedings of the 14th eurographics symposium on rendering (EGSR’03), pp 26–37 Eurographics Association

    Google Scholar 

  22. Goshtasby AA High dynamic range reduction via maximization of image information, 2003. http://www.cs.wright.edu/people/faculty/agoshtas/goshtasby_hdr.pdf. CiteSeerX: doi:10.1.1.121.421

  23. Helton JC, Davis FJ (2002) Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk Anal 22(3):591–622

    Article  Google Scholar 

  24. Helton JC, Davis FJ (2002) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Sandia report SAND2001-0417, Sandia National Laboratories

    Google Scholar 

  25. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Sandia report SAND2006-2901, Sandia National Laboratories

    Google Scholar 

  26. Jeronen J (2011) On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid: a study into paper production in mathematical terms. PhD thesis, University of Jyväskylä, Jyväskylä. http://julkaisut.jyu.fi/?id=978-951-39-4596-1

  27. Krawczyk G, Myszkowski K, Seidel H-P (2005) Perceptual effects in real-time tone mapping. In: Proceedings of the 21st spring conference on computer graphics (SCCG’05). ACM, New York, pp 195–202

    Chapter  Google Scholar 

  28. Larson GW, Rushmeier H, Piatko C (1997) Visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans Vis Comput Graph 3(4):291–306

    Article  Google Scholar 

  29. Mann S, Picard RW (1995) On being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In: Proceedings the 48th annual conference of IS&T, pp 442–448

    Google Scholar 

  30. Mantiuk R, Daly S, Kerofsky L (2008) Display adaptive tone mapping. ACM Trans Graph (TOG) – Proc ACM SIGGRAPH 2008, 27(3). doi:10.1145/1360612.1360667

  31. Mantiuk R, Seidel H-P (2008) Modeling a generic tone-mapping operator. Comput Graph Forum 27(2):699–708. doi:10.1111/j.1467-8659.2008.01168.x

    Article  Google Scholar 

  32. McCann JJ, Rizzi A (2007) Veiling glare: the dynamic range limit of HDR images. In: Human vision and electronic imaging XII. Proceedings of electronic imaging science and technology, vol 6492. IS&T and SPIE

    Google Scholar 

  33. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  34. Owen Art B (1992) Orthogonal arrays for computer experiments, integration and visualization. Stat Sin 2(2):439–452

    MathSciNet  MATH  Google Scholar 

  35. Park SH, Montag ED (2007) Evaluating tone mapping algorithms for rendering non-pictorial (scientific) high-dynamic-range images. J Vis Commun Image Represent 18(5):415–428

    Article  Google Scholar 

  36. Parks DR, Roederer M, Moore WA (2006) A new “logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 69(6):541–551

    Google Scholar 

  37. Pattanaik SN, Tumblin J, Yee H, Greenberg DP (2000) Time-dependent visual adaptation for fast realistic image display. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques (SIGGRAPH’00). ACM, New York, pp 47–54

    Chapter  Google Scholar 

  38. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):355–368

    Article  Google Scholar 

  39. Reinhard E, Devlin K (2005) Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans Vis Comput Graph 11(1):13–24

    Article  Google Scholar 

  40. Reinhard E, Kunkel T, Marion Y, Brouillat J, Cozot R, Bouatouch K (2007) Image display algorithms for high and low dynamic range display devices. J Soc Inf Disp 15(12):997–1014

    Article  Google Scholar 

  41. Schlick C (1994) Quantization techniques for visualization of high dynamic range pictures. In: Photorealistic rendering techniques. Proceedings of the 5th eurographics workshop on rendering. Springer, Berlin, pp 7–20

    Google Scholar 

  42. Shan Q, Jia J, Brown MS (2010) Globally optimized linear windowed tone mapping. IEEE Trans Vis Comput Graph 16(4):663–675

    Article  Google Scholar 

  43. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc B 53(3):683–690

    MathSciNet  MATH  Google Scholar 

  44. Smith K, Krawczyk G, Myszkowski K, Seidel H-P (2006) Beyond tone mapping: enhanced depiction of tone mapped HDR images. Comput Graph Forum 25(3):427–438

    Article  Google Scholar 

  45. Talvala E-V, Adams A, Horowitz M, Levoy M (2007) Veiling glare in high dynamic range imaging. ACM Trans Graph (TOG) – Proc ACM SIGGRAPH 2008, 26(3)

    Google Scholar 

  46. Tang B (1993) Orthogonal array-based Latin hypercubes. J Am Stat Assoc 88(424):1392–1397

    Article  MATH  Google Scholar 

  47. Tumblin J, Hodgins JK, Guenter BK (1999) Two methods for display of high contrast images. ACM Trans Graph 18(1):56–94

    Article  Google Scholar 

  48. Wu Y, Qiu B (2010) Perceptually fractural pixel values in rendering high dynamic range images. In: Proc SPIE, vol 7744. doi:10.1117/12.863019

    Google Scholar 

  49. Yoshida A, Blanz V, Myszkowski K, Seidel H-P (2005) Perceptual evaluation of tone mapping operators with real-world scenes. In: Human vision and electronic imaging X. Proceedings of the SPIE, vol 5666. SPIE, New York, pp 192–203

    Google Scholar 

  50. Yoshida A, Mantiuk R, Myszkowski K, Seidel H-P (2006) Analysis of reproducing real-world appearance on displays of varying dynamic range. Comput Graph Forum 25(3):415–426

    Article  Google Scholar 

  51. Yuan X, Nguyen MX, Chen B, Porter DH (2005) High dynamic range volume visualization. In: Proceedings of the conference on visualization 2005. IEEE Comput Sci, Los Alamitos, pp 327–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Jeronen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jeronen, J. (2013). Visual Contrast Preserving Representation of High Dynamic Range Mathematical Functions. In: Repin, S., Tiihonen, T., Tuovinen, T. (eds) Numerical Methods for Differential Equations, Optimization, and Technological Problems. Computational Methods in Applied Sciences, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5288-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5288-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5287-0

  • Online ISBN: 978-94-007-5288-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics