Skip to main content

Shape Optimization via Control of a Shape Function on a Fixed Domain: Theory and Numerical Results

  • Chapter
Numerical Methods for Differential Equations, Optimization, and Technological Problems

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 27))

Abstract

We present a fixed-domain approach for the solution of shape optimization problems governed by linear or nonlinear elliptic partial differential state equations with Dirichlet boundary conditions, where shape optimization is facilitated via optimal control of a shape function. The method involves extending the state equation to a larger domain using regularization. Results regarding the convergence to the original problem are provided as well as differentiability properties of the control-to-state mappings. An algorithm for the numerical implementation of the method is stated and, in a series of numerical shape optimization experiments, the algorithm’s behavior is studied with regard to varying the regularization parameter and initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    High Temperature Numerical Induction Heating Simulator; pronunciation: ∼hit-nice.

References

  1. Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196

    Article  MATH  Google Scholar 

  2. Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346

    Article  MathSciNet  MATH  Google Scholar 

  3. Chenais D (1975) On the existence of a solution in a domain identification problem. J Math Anal Appl 52(2):189–219

    Article  MathSciNet  MATH  Google Scholar 

  4. Eymard R, Gallouët T, Herbin R (2000) Finite volume methods. In: Ciarlet PG, Lions J-L (eds) Handbook of numerical analysis, Vol. VII. North-Holland, Amsterdam, pp 713–1020

    Google Scholar 

  5. Fuhrmann J, Koprucki Th, Langmach H (2001) pdelib: An open modular tool box for the numerical solution of partial differential equations. Design patterns. In: Hackbusch W, Wittum G (eds) Proceedings of the 14th GAMM seminar on concepts of numerical software, Kiel, 1998. Vieweg, Braunschweig

    Google Scholar 

  6. Geiser J, Klein O, Philip P (2007) Numerical simulation of temperature fields during the sublimation growth of SiC single crystals, using WIAS-HiTNIHS. J Cryst Growth 303(1):352–356

    Article  Google Scholar 

  7. Geymonat G, Gilardi G (1998) Contre-exemples à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers. In: Équations aux dérivées partielles et applications: articles dédiées à J-L Lions. Gauthier-Villars, Paris, pp 541–548

    Google Scholar 

  8. Halanay A, Murea C, Tiba D (2012) Existence and approximation for a steady fluid-structure interaction problem using fictitious domain approach with penalization. Submitted to J. Math. Fluid Mech

    Google Scholar 

  9. Halanay A, Tiba D (2009) Shape optimization for stationary Navier-Stokes equations. Control Cybern 38(4B):1359–1374

    MathSciNet  MATH  Google Scholar 

  10. Henrot A, Pierre M (2005) Variation et optimisation de formes. Springer, Berlin

    MATH  Google Scholar 

  11. Klein O, Lechner Ch, Druet P-É, Philip P, Sprekels J, Frank-Rotsch Ch, Kießling F-M, Miller W, Rehse U, Rudolph P (2009) Numerical simulations of the influence of a traveling magnetic field, generated by an internal heater-magnet module, on liquid encapsulated Czochralski crystal growth. Magnetohydrodynamics 45(4):557–567

    Google Scholar 

  12. Lions J-L (1983) Contrôle des systèmes distribués singuliers. Méthodes Mathématiques de l’Informatique, vol 13. Gauthier-Villars, Montrouge

    MATH  Google Scholar 

  13. Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parametrization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  14. Mäkinen RAE, Neittaanmäki P, Tiba D (1992) On a fixed domain approach for a shape optimization problem. In: Amesm W, van Houwen P (eds) Computational and applied mathematics II, Dublin, 1991. North-Holland, Amsterdam, pp 317–326

    Google Scholar 

  15. Natori M, Kawarada H (1981) An application of the integrated penalty method to free boundary problems of Laplace equation. Numer Funct Anal Optim 3(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  16. Neittaanmäki P, Pennanen A, Tiba D (2009) Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions. Inverse Probl 25(5):055003

    Article  Google Scholar 

  17. Neittaanmäki P, Sprekels J, Tiba D (2006) Optimization of elliptic systems. Theory and applications. Springer, New York

    Google Scholar 

  18. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  19. Philip P (2010) Analysis, optimal control, and simulation of conductive-radiative heat transfer. Ann Acad Rom Sci Ser Math Appl 2(2):171–204

    MathSciNet  Google Scholar 

  20. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Santosa F (1995/96) A level-set approach for inverse problems involving obstacles. ESAIM Contrôle Optim Calc Var 1:17–33

    Article  MathSciNet  Google Scholar 

  22. Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener Comput Syst 20(3):475–487

    Article  Google Scholar 

  23. Schenk O, Gärtner K, Fichtner W (2000) Efficient sparse LU factorization with left-right looking strategy on shared memory multiprocessors. BIT Numer Math 40(1):158–176

    Article  MATH  Google Scholar 

  24. Sethian JA (1996) Level set methods. Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Shewchuk JR (1996) Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Lecture notes in computer science, vol 1148. Springer, Berlin, pp 203–222

    Chapter  Google Scholar 

  26. Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput Geom 22(1–3):21–74

    Article  MathSciNet  MATH  Google Scholar 

  27. Temam R (1979) Navier-Stokes equations. Theory and numerical analysis. North-Holland, Amsterdam

    MATH  Google Scholar 

  28. Wang G, Yang D (2008) Decomposition of vector-valued divergence free Sobolev functions and shape optimization for stationary Navier-Stokes equations. Commun Partial Differ Equ 33(1–3):429–449

    Article  MATH  Google Scholar 

  29. Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work of Dan Tiba was supported by CNCS Romania under Grant ID-PCE-2011-3-0211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Philip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Philip, P., Tiba, D. (2013). Shape Optimization via Control of a Shape Function on a Fixed Domain: Theory and Numerical Results. In: Repin, S., Tiihonen, T., Tuovinen, T. (eds) Numerical Methods for Differential Equations, Optimization, and Technological Problems. Computational Methods in Applied Sciences, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5288-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5288-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5287-0

  • Online ISBN: 978-94-007-5288-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics