Skip to main content

Comparative Analysis of Techniques Oriented on the Recognition of Ligand Binding Area in Proteins

  • Chapter
  • First Online:

Part of the book series: Focus on Structural Biology ((FOSB,volume 8))

Abstract

This chapter presents an analysis of the various models implemented by software packages which enable computerized identification of ligand binding sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altman DG, Bland JM (1994) Diagnostic tests 1: sensitivity and specificity. BMJ 308(6943):1552

    Article  PubMed  CAS  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. doi:10.1093/nar/gkq399, PMID: 20478830

  • Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424

    Article  PubMed  CAS  Google Scholar 

  • Banach M, Prymula K, Jurkowski W, Konieczny L, Roterman I (2012) Fuzzy oil drop model to interpret the structure of antifreeze proteins and their mutants. J Mol Model 18(1):229–237

    Google Scholar 

  • Binkowski TA, Naghibzadeh S, Liang J (2003) CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res 31:3352–3355

    Article  PubMed  CAS  Google Scholar 

  • Carugo O (2007) Detailed estimation of bioinformatics prediction reliability through the fragmented prediction performance plots. BMC Bioinformatics 8:380, PMID:17931407

    Article  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31(13):3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  PubMed  CAS  Google Scholar 

  • Edelsbrunner H (1995) The union of balls and its dual shape. Disc Comput Geom 13:415–440

    Article  Google Scholar 

  • Edelsbrunner H, Mucke EP (1994) Three-dimensional alpha shapes. ACM Trans Graphics 13:43–72

    Article  Google Scholar 

  • Edelsbrunner H, Shah NR (1996) Incremental topological flipping works for regular triangulations. Algorithmica 15:223–241

    Article  Google Scholar 

  • Edelsbrunner H, Facello M, Fu P, Liang J (1995) Measuring proteins and voids in proteins. In: Proceedings of the 28th annual Hawaii international conference on system sciences. IEEE Computer Society Press, Los Alamitos, pp 256–264

    Google Scholar 

  • Edelsbrunner H, Facello M, Liang J (1998) On the definition and the construction of pockets in macromolecules. Disc Appl Math 88:83–102

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  Google Scholar 

  • Facello MA (1995) Implementation of a randomized algorithm for Delaunay and regular triangulations in three dimensions. Comput Aided Geom Des 12:349–370

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  • Goldenberg O, Erez E, Nimrod G, Ben-Tal N (2009) The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res 37, Database issue D323–D327

    Google Scholar 

  • Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15:359–363

    Article  PubMed  CAS  Google Scholar 

  • Jambon M, Imberty A, Deléage G, Geourjon G (2003) A new bioinformatics approach to detect common 3D sites in protein structures. Proteins 52:137–145

    Article  PubMed  CAS  Google Scholar 

  • Jambon M, Andrieu O, Combet C, Deléage G, Delfaud F, Geourjon C (2005) The SuMo server: 3D search for protein functional sites. Bioinformatics 21:3929–3930

    Article  PubMed  CAS  Google Scholar 

  • Joosten V, van Berkel WJ (2007) Flavoenzymes. Curr Opin Chem Biol 11(2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R (2011) ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acid res, 39 (Database issue):D712–D717

    Google Scholar 

  • Konieczny L, Brylinski M, Roterman I (2006) Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 6:15–22

    PubMed  CAS  Google Scholar 

  • Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA (2009) PDBsum new things. Nucleic Acids Res 37:D355–D359

    Article  PubMed  CAS  Google Scholar 

  • Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Edelsbrunner H, Woodward C (1998a) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998b) Analytical shape computation of macromolecules. II. Identification and computation of inaccessible cavities in proteins. Proteins Struct Funct Genet 33:18–29

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    Article  PubMed  CAS  Google Scholar 

  • Mayrose I, Graur D, Ben-Tal N, Pupko T (2004) Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. Mol Biol Evol 21:1781–1791

    Article  PubMed  CAS  Google Scholar 

  • Olson DL, Delen D (2008) Advanced data mining techniques. Springer-Verlag Berlin, Heidelberg, p 138. ISBN 3540769161

    Google Scholar 

  • Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides – small molecules with a multitude of functions. Biochem J 402:205–218

    Article  PubMed  CAS  Google Scholar 

  • Prymula K, Jadczyk T, Roterman I (2011) Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction. J Comput Aided Mol Des 25(2):117–133

    Article  PubMed  CAS  Google Scholar 

  • Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N (2002) Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics 18:71–77

    Article  Google Scholar 

  • Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res. 39 (Database issue):D392–D401

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tsai C-J, Ma B, Nussinov R (2009) Protein-protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34(12):594–600

    Article  PubMed  CAS  Google Scholar 

  • van Rijsbergen CV (1979) Information retrieval, 2nd edn. Butterworth, London; Boston. ISBN 0-408-70929-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Roterman-Konieczna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alejster, P., Banach, M., Jurkowski, W., Marchewka, D., Roterman-Konieczna, I. (2013). Comparative Analysis of Techniques Oriented on the Recognition of Ligand Binding Area in Proteins. In: Roterman-Konieczna, I. (eds) Identification of Ligand Binding Site and Protein-Protein Interaction Area. Focus on Structural Biology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5285-6_4

Download citation

Publish with us

Policies and ethics