Can the Structure of the Hydrophobic Core Determine the Complexation Site?

Part of the Focus on Structural Biology book series (FOSB, volume 8)


Stabilization of the tertiary protein structure is most often attributed to hydrophobic interactions, although this type of interaction is not specifically reflected in protein force fields. Initial attempts to extend the analysis of traditional nonbinding interactions with factors representing hydrophobic interactions (Levitt 1976) were not particularly successful, even though the influence of the aqueous environment on molecular dynamics cannot be underestimated in respect to experimental observations.


Hydrophobic core Oil drop Tertiary structure stabilization Fuzzy oil drop Effective atom Gauss function Pair-wise interaction Theoretical hydrophobicity distribution Observed hydrophobicity distribution Idealized hydrophobicity distribution Empirical hydrophobicity distribution Hydrophobicity deficiency Hydrophobicity excess Kullback–Leibler entropy Divergence entropy Random distribution Structural discordance Downhill proteins Antifreeze proteins Fast-folding proteins 


  1. Banach M, Roterman I (2009) Recognition of protein complexation based on hydrophobicity distribution. Bioinformation 4(3):98–100PubMedCrossRefGoogle Scholar
  2. Banach M, Prymula K, Konieczny L, Roterman I (2011) “Fuzzy oil drop” model verified positively. Bioinformation 5(9):375–377PubMedCrossRefGoogle Scholar
  3. Banach M, Prymula K, Jurkowski W, Konieczny L, Roterman I (2012) Fuzzy oil drop model to interpret the structure of antifreeze proteins and their mutants. J Mol Model 18(1):229–237PubMedCrossRefGoogle Scholar
  4. Brylinski M, Konieczny L, Roterman I (2006a) Hydrophobic collapse in late-stage folding (in silico) of bovine pancreatic trypsin inhibitor. Biochimie 88(9):1229–1239PubMedCrossRefGoogle Scholar
  5. Brylinski M, Konieczny L, Roterman I (2006b) Fuzzy-oil-drop hydrophobic force field–a model to represent late-stage folding (in silico) of lysozyme. J Biomol Struct Dyn 23(5):519–528PubMedCrossRefGoogle Scholar
  6. Brylinski M, Konieczny L, Roterman I (2006c) Hydrophobic collapse in (in silico) protein folding. Comput Biol Chem 30(4):255–267PubMedCrossRefGoogle Scholar
  7. Brylinski M, Konieczny L, Roterman I (2007a) Is the protein folding an aim-oriented process? Human haemoglobin as example. Int J Bioinform Res Appl 3(2):234–260PubMedCrossRefGoogle Scholar
  8. Brylinski M, Prymula K, Jurkowski W, Kochańczyk M, Stawowczyk E, Konieczny L, Roterman I (2007b) Prediction of functional sites based on the fuzzy oil drop model. PLoS Comput Biol 3(5):e94, EpubPubMedCrossRefGoogle Scholar
  9. Brylinski M, Kochanczyk M, Broniatowska E, Roterman I (2007c) Localization of ligand binding site in proteins identified in silico. J Mol Model 13(6–7):665–675PubMedCrossRefGoogle Scholar
  10. Bushmarina NA, Blanchet CE, Vernier G, Forge V (2006) Cofactor effects on the protein folding reaction: acceleration of a-lactalbumin refolding by metal ions. Protein Sci 15:659–671PubMedCrossRefGoogle Scholar
  11. Choi SI, Han KS, Kim CW, Ryu K-S, Kim BH et al (2008) Protein solubility and folding enhancement by interaction with RNA. PLoS One 3(7):e2677PubMedCrossRefGoogle Scholar
  12. Curnow P, Booth PJ (2010) The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein. J Mol Biol 403:630–642PubMedCrossRefGoogle Scholar
  13. DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163(3871):1073–1075PubMedCrossRefGoogle Scholar
  14. Dyer RB (2007) Ultrafast and downhill protein folding. Curr Opin Struct Biol 17:38–47PubMedCrossRefGoogle Scholar
  15. Fisher AC, DeLisa MP (2008) Laboratory evolution of fast-folding green fluorescent protein using secretory pathway quality control. PLoS One 3(6):e2351PubMedCrossRefGoogle Scholar
  16. Gouda H, Torigoe H, Saito A, Sato M, Arata Y, Shimada I (1992) Three-dimensional solution structure of the B domain of staphylococcal protein A: comparisons of the solution and crystal structures. Biochemistry 31:9665–9672PubMedCrossRefGoogle Scholar
  17. Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384:285–288PubMedCrossRefGoogle Scholar
  18. Jorov A, Zhorov BS, Yang DS (2004) Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Sci 13:1524–1537PubMedCrossRefGoogle Scholar
  19. Kayatekin C, Zitzewitz JA, Matthews CR (2008) Zinc binding modulates the entire folding free energy surface of human Cu, Zn superoxide dismutase. J Mol Biol 384(2):540–555PubMedCrossRefGoogle Scholar
  20. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63PubMedCrossRefGoogle Scholar
  21. Konieczny L, Brylinski M, Roterman I (2006) Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 6(1–2):15–22PubMedGoogle Scholar
  22. Kopecká J, Krijt J, Raková K, Kožich V (2011) Restoring assembly and activity of cystathionine β-synthase mutants by ligands and chemical chaperones. J Inherit Metab Dis 34:39–48PubMedCrossRefGoogle Scholar
  23. Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107PubMedCrossRefGoogle Scholar
  24. Marchewka D, Banach M, Roterman I (2011) Internal force field in proteins seen by divergence entropy. Bioinformation 6(8):300–302PubMedCrossRefGoogle Scholar
  25. Minervini G, Evangelista G, Polticelli F, Piwowar M, Kochanczyk M, Flis L, Malawski M, Szepieniec T, Wiśniowski Z, Matczyńska E, Prymula K, Roterman I (2008) Never born proteins as a test case for ab initio protein structures prediction. Bioinformation 3(4):177–179PubMedCrossRefGoogle Scholar
  26. Nalewajski RF (2006) Information theory of molecular systems. Elsevier, Amsterdam. ISBN 978-0-444-51966-5Google Scholar
  27. Ozkan SB, Dill K, Bahar I (2002) Fast-folding protein kinetics, hidden intermediates and the sequential stabilization model. Protein Sci 11:1958–1970PubMedCrossRefGoogle Scholar
  28. Prymula K, Roterman I (2009) Functional characteristics of small proteins (70 amino acid residues) forming protein-nucleic acid complexes. J Biomol Struct Dyn 26(6):663–677PubMedCrossRefGoogle Scholar
  29. Prymula K, Piwowar M, Kochanczyk M, Flis L, Malawski M, Szepieniec T, Evangelista G, Minervini G, Polticelli F, Wiśniowski Z, Sałapa K, Matczyńska E, Roterman I (2009) In silico structural study of random amino acid sequence proteins not present in nature. Chem Biodivers 6(12):2311–2336PubMedCrossRefGoogle Scholar
  30. Prymula K, Sałapa K, Roterman I (2010) “Fuzzy oil drop” model applied to individual small proteins built of 70 amino acids. J Mol Model 16(7):1269–1282PubMedCrossRefGoogle Scholar
  31. Prymula K, Jadczyk T, Roterman I (2011) Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction. J Comput Aided Mol Des 25(2):117–133PubMedCrossRefGoogle Scholar
  32. Ramoni R, Vincent F, Grolli S, Conti V, Malosse C, Boyer FD, Nagnan-Le Meillour P, Spinelli S, Cambillau C, Tegoni M (2001) The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J Biol Chem 276:7150–7155PubMedCrossRefGoogle Scholar
  33. Roterman I, Konieczny L, Jurkowski W, Prymula K, Banach M (2011) Two-intermediate model to characterize the structure of fast-folding proteins. J Theor Biol 283(1):60–70PubMedCrossRefGoogle Scholar
  34. Sakamoto K, Bu G, Chen S, Takei Y, Hibi K, Kodera Y, McCormick LM, NakaoA NM, Muramatsu T, Kadomatsu K (2011) Premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine and its receptor LDL receptor-related protein 1. J Biol Chem 286(10):8405–8413PubMedCrossRefGoogle Scholar
  35. Warren MS, Brown KA, Farnum MF, Howell EE, Kraut J (1991) Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Biochemistry 30:11092–11103PubMedCrossRefGoogle Scholar
  36. Wittung-Stafshede P (2002) Role of cofactors in protein folding. Acc Chem Res 35(4):201–208PubMedCrossRefGoogle Scholar
  37. Zobnina V, Roterman I (2009) Application of the fuzzy-oil-drop model to membrane protein simulation. Proteins 77(2):378–394PubMedCrossRefGoogle Scholar
  38. Zhu Y, Alonso DO, Maki K, Huang CY, Lahr SJ, Daggett V, Roder H, DeGrado WF, Gai F (2003) Ultrafast folding of alpha3d: a de novo designed three-helix bundle protein. Proc Natl Acad Sci USA 100:15486–15491PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Bioinformatics and TelemedicineJagiellonian University – Medical CollegeCracowPoland
  2. 2.Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityCracowPoland

Personalised recommendations