Skip to main content

SuMo: A Tool for Protein Function Inference Based on 3D Structures Comparisons

  • Chapter
  • First Online:
Identification of Ligand Binding Site and Protein-Protein Interaction Area

Abstract

The prediction of important residues for binding/recognition sites in protein 3D structures is still a matter of challenge. Indeed, binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. In our group, we designed an innovative bioinformatics method called SuMo in order to detect similar 3-dimensional (3D) sites in proteins (Jambon et al. Protein-Struct Funct Genet 52:137–145, 2003). This approach allowed the comparison of protein structures or substructures, and detected local spatial similarities: the main advantage of the method is its independence for both amino acid sequences and backbone structures. In contrast to already existing tools, the basis for this method is a representation of the protein structure by a set of stereo chemical groups that are defined independently from the notion of amino acid. An efficient heuristics for finding similarities has been developed which uses graphs of triangles of chemical groups to represent the protein structures. The SuMo (Surfing the Molecules) program allows the dynamic definition of chemical groups, the selection of sites in the proteins, and the management and screening of databases. The basic principle of SuMo has been used in several recent studies (Sperandio et al. J Cheml Inf Model 47:1097–1110, 2007) (Doppelt-Azeroual et al. Protein Sci 19:847–867, 2010). In order to give access to the SuMo tool, we proposed a web server (Jambon et al. Bioinformatics 21:3929–3930, 2005) reachable at http://sumo-pbil.ibcp.fr. This chapter will describe the main rationale we initially took for designing the first release of SuMo. In addition, we propose a completely new set of parameters best suitable for proteins and finally, we illustrate its power with several biological examples. Two of them dealing with serine proteases and lectins are given for a comparison purpose. The first two examples illustrate the capability of SuMo to deal with completely opposite modes of evolution i.e. convergence and divergence. A new biological application dealing with betalactame binding protein PBB molecules is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Banerjee RDK, Ravishankar R, Suguna K, Surolia A, Vijayan M (1996) Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J Mol Biol 259:281–296

    Article  PubMed  CAS  Google Scholar 

  • Bertolazzi P, Guerra C, Liuzzi G (2010) A global optimization algorithm for protein surface alignment. BMC Bioinformatics 11:488

    Article  PubMed  Google Scholar 

  • Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23:1875–1882

    Article  PubMed  CAS  Google Scholar 

  • Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5:e1000585

    Article  PubMed  Google Scholar 

  • Cars O, Molstad S, Melander A (2001) Variation in antibiotic use in the European Union. Lancet 357:1851–1853

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shoichet B, Bonnet R (2005) Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J Am Chem Soc 127:5423–5434

    Article  PubMed  CAS  Google Scholar 

  • Coenen S, Ferech M, Dvorakova K, Hendrickx E, Suetens C, Goossens H (2006) European surveillance of antimicrobial consumption (ESAC): outpatient cephalosporin use in Europe. J Antimicrob Chemother 58:413–417

    Article  PubMed  CAS  Google Scholar 

  • Doppelt-Azeroual O, Delfaud F, Moriaud F, de Brevern AG (2010) Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins. Protein Sci 19:847–867

    Article  PubMed  CAS  Google Scholar 

  • Erdin S, Ward RM, Venner E, Lichtarge O (2010) Evolutionary trace annotation of protein function in the structural proteome. J Mol Biol 396:1451–1473

    Article  PubMed  CAS  Google Scholar 

  • Ferech M, Coenen S, Dvorakova K, Hendrickx E, Suetens C, Goossens H (2006) European surveillance of antimicrobial consumption (ESAC): outpatient penicillin use in Europe. J Antimicrob Chemother 58:408–412

    Article  PubMed  CAS  Google Scholar 

  • Gordon EJ, Mouz N, Duee E, Dideberg O (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 299(2):477–485

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Zaslavskiy M, Vert JP, Stoven V (2010) A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction. BMC Bioinformatics 11(1):99

    Article  PubMed  Google Scholar 

  • Holm L, Sander C (1997) Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids Res 25:231–234

    Article  PubMed  CAS  Google Scholar 

  • Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA (2008) The 20 years of PROSITE. Nucleic Acids Res 36:D245–D249

    Article  PubMed  CAS  Google Scholar 

  • Jambon M, Imberty A, Deleage G, Geourjon C (2003) A new bioinformatic approach to detect common 3D sites in protein structures. Protein-Struct Funct Genet 52:137–145

    Article  CAS  Google Scholar 

  • Jambon M, Andrieu O, Combet C, Deleage G, Delfaud F, Geourjon C (2005) The SuMo server: 3D search for protein functional sites. Bioinformatics 21:3929–3930

    Article  PubMed  CAS  Google Scholar 

  • Janin J (2010) Protein-protein docking tested in blind predictions: the CAPRI experiment. Mol Biosyst 6:2351–2362

    Article  PubMed  CAS  Google Scholar 

  • Janin J, Henrick K, Moult J, Ten Eyck L, Sternberg MJE, Vajda S, Vasker I, Wodak SJ (2003) CAPRI: a Critical Assessment of PRedicted Interactions. Protein-Struct Funct Bioinform 52:2–9

    Article  CAS  Google Scholar 

  • Kashima A, Inoue Y, Sugio S, Maeda I, Nose T, Shimohigashi Y (1998) X-ray crystal structure of a dipeptide-chymotrypsin complex in an inhibitory interaction. Eur J Biochem 255:12–23

    Article  PubMed  CAS  Google Scholar 

  • Kristensen DM, Ward RM, Lisewski AM, Erdin S, Chen BY, Fofanov VY, Kimmel M, Kavraki LE, Lichtarge O (2008) Prediction of enzyme function based on 3D templates of evolutionarily important amino acids. BMC Bioinformatics 9(1):17

    Article  PubMed  Google Scholar 

  • Mathews II, Vanderhoff-Hanaver P, Castellino FJ, Tulinsky A (1996) Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Biochemistry 35:2567–2576

    Article  PubMed  CAS  Google Scholar 

  • Moriaud F, Doppelt-Azeroual O, Martin L, Oguievetskaia K, Koch K, Vorotyntsev A, Adcock SA, Delfaud F (2009) Computational fragment-based approach at PDB scale by protein local similarity. J Chem Inf Model 49:280–294

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR (1991) Searching protein-sequence libraries – comparison of the sensitivity and selectivity of the smith-waterman and fasta algorithms. Genomics 11:635–650

    Article  PubMed  CAS  Google Scholar 

  • Reisen F, Weisel M, Kriegl JM, Schneider G (2010) Self-organizing fuzzy graphs for structure-based comparison of protein pockets. J Proteome Res 9:6498–6510

    Article  PubMed  CAS  Google Scholar 

  • Sael L, La D, Li B, Rustamov R, Kihara D (2008) Rapid comparison of properties on protein surface. Protein-Struct Funct Bioinform 73:1–10

    Article  CAS  Google Scholar 

  • Schalon C, Surgand JS, Kellenberger E, Rognan D (2008) A simple and fuzzy method to align and compare druggable ligand-binding sites. Protein-Struct Funct Bioinform 71:1755–1778

    Article  CAS  Google Scholar 

  • Shulman-Peleg A, Mintz S, Nussinov R, Wolfson HJ (2004) Protein-protein interfaces: recognition of similar spatial and chemical organizations. Algorithm Bioinform Proc 3240:194–205

    Article  Google Scholar 

  • Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161–D166

    Article  PubMed  CAS  Google Scholar 

  • Sonavane S, Chakrabarti P (2010) Prediction of active site cleft using support vector machines. J Chem Inf Model 50:2266–2273

    Article  PubMed  CAS  Google Scholar 

  • Sperandio O, Andrieu O, Miteva MA, Vo MQ, Souaille M, Delfaud F, Villoutreix BO (2007) MED-SuMoLig: a new ligand-based screening tool for efficient scaffold hopping. J Chem Inf Model 47:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Tripos (2010) Sybyl X. St. Louis, MO 63144–2319 USA, Tripos Inc

    Google Scholar 

  • Venkatraman V, Sael L, Kihara D (2009) Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors. Cell Biochem Biophys 54:23–32

    Article  PubMed  CAS  Google Scholar 

  • Via A, Ferre F, Brannetti B, Helmer-Citterich M (2000) Protein surface similarities: a survey of methods to describe and compare protein surfaces. Cell Mol Life Sci 57:1970–1977

    Article  PubMed  CAS  Google Scholar 

  • Wallace AC, Borkakoti N, Thornton JM (1997) TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Protein Sci 6:2308–2323

    Article  PubMed  CAS  Google Scholar 

  • Ward RM, Venner E, Daines B, Murray S, Erdin S, Kristensen DM, Lichtarge O (2009) Evolutionary trace annotation server: automated enzyme function prediction in protein structures using 3D templates. Bioinformatics 25:1426–1427

    Article  PubMed  Google Scholar 

  • Weskamp N, Kuhn D, Hullermeier E, Klebe G (2004) Efficient similarity search in protein structure databases by k-clique hashing. Bioinformatics 20:1522–1526

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Martin Jambon as the main author of the original SuMo program written in OCAML.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Deléage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chemelle, JA., Bettler, E., Combet, C., Terreux, R., Geourjon, C., Deléage, G. (2013). SuMo: A Tool for Protein Function Inference Based on 3D Structures Comparisons. In: Roterman-Konieczna, I. (eds) Identification of Ligand Binding Site and Protein-Protein Interaction Area. Focus on Structural Biology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5285-6_1

Download citation

Publish with us

Policies and ethics