Skip to main content

Neurolipofuscin in Aging and Aluminum-Induced Aging: Possible Therapeutic Interventions

  • Chapter
  • First Online:
Brain Aging and Therapeutic Interventions

Abstract

Neurolipofuscin is considered a reliable biomarker of aging. Accumulating evidence indicates that it is not simply an inert, harmless, wear and tear pigment but it distorts the protein building machinery of the cell and interferes with the important autophagic process. Numerous forms of cellular stresses activate macroautophagy. Increased autophagic vacuoles (AVs) are associated with not only aging and ceroid disorders but also Alzheimer’s disease. Mitochondria may have means for specifically targeting macroautophagy degradation which would be particularly important for the healthy long axons and distal terminals. The decomposition of mitochondrial material is not only an important source of lipofuscin, but is at the same time a key to the understanding of mechanism of aging. Lipofuscin may become indigestible because the proteins are ‘fixed’ via aldehyde bridges between amino groups. The increasing proportion of defective mitochondria and an ever decreasing supply of functional lysosomes are postulated to hasten the senescence and/or demise of the postmitotic cells. Oxidatively damaged mitochondria may contain some already peroxidized undegradable macromolecules. Brain aluminum content is known to increase with age Aluminum toxicity might be one of the underlying causes of Alzhemier’s disease. Accumulation of this element in aged neurons has been demonstrated along with increment of lipofuscin. Both aluminum and iron bind to transferrin receptor before crossing the blood-brain barrier via transferrin mediated endocystosis. High level of iron, concomitant with increased aluminum content, has been detected in the aged rat brain. Accumulating evidence indicates that chronic aluminum administration accelerates aging process. A number of antioxidants have been reported to decrease lipofuscin content of neurons. Centrophenoxine facilitates elimination of lipofuscin. Also, citiolone retards lipofuscinogenesis. Recently, some Ayurvedic herbal remedies, such as Maharishi Amrit Kalash, have been found to reduce lipid peroxidation and lipofuscin deposition. Administration of extract of Bacopa monnieri, which possesses strong antioxidant activity, has also successfully reduced lipofuscin content of neurons subjected to aluminum-induced lipofuscinogenesis. We thus conclude that accumulation of lipofuscin, mitochondrial dysfunctioning and increased reactive oxygen species may be significant indicator of aging—perhaps even central to our understanding of the complex phenomenon of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloj Totaro E, Pisanti FA (1981) Quantitative evaluation of lipofuscin in relation to age and meclofenoxate treatment. Electron microscopic study of "Torpedo M." neurons. Acta Neurol (Napoli) 3:453–459

    Google Scholar 

  • Brunk UT, Terman A (2002a) Lipofuscin: mechanisms of age related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  Google Scholar 

  • Brunk UT, Terman A (2002b) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    Article  CAS  Google Scholar 

  • Deb DD, Kapoor P, Dighe RP, Padmaja R et al (2008) In vitro safety evaluation and anticlastogenic effect of BacoMind on human lymphocytes. Biomed Environ Sci 1:7–23

    Article  Google Scholar 

  • Deloncle R, Huguet F, Fernandez B, Quellard N et al (2001) Ultrastructural study of rat hippocampus after chronic administration of aluminum l-glutamate: an acceleration of the aging process. Exp Gerontol 36:231–244

    Article  PubMed  CAS  Google Scholar 

  • Glees P, Hasan M (1976) Lipofuscin in neuronal aging and diseases. Stuttgart Norm Pathol Anat (Stuttg) 32:1–68

    CAS  Google Scholar 

  • Gray DA, Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowledge Environ 5:re1

    Google Scholar 

  • Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) A theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1989) Lipofuscin and ceroid formation: the cellular recycling system. Adv Exp Med Biol 266:3–15

    PubMed  CAS  Google Scholar 

  • Hasan M, Glees P, El-Ghazzawi E (1974) Age-associated changes in the hypothalmus of the guinea pig: effect of dimethylaminoethyl p-chlorophenoxyacetate an electron microscopic and histochemical study. Exp Gerontol 9:153–159

    Article  PubMed  CAS  Google Scholar 

  • Hasan M, Tripathi S, Mahdi AA, Mitra K et al (2009) Lipofuscin, lipid peroxidation and antioxidant status in discrete brain regions of the aged rat brain. Proc Indian Natl Sci Acad 75:1–9

    Google Scholar 

  • Hohn S, Dallerac G, Faure A, Urbach YK et al (2011) Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease. J Neurosci 15:8986–8997

    Article  Google Scholar 

  • Ivy GO, Kanai S, Ohta M, Smith G et al (1989) Lipofuscin-like substances accumulate rapidly in brain, retina and internal organs with cysteine protease inhibition. Adv Exp Med Biol 266:31–45

    PubMed  CAS  Google Scholar 

  • Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111

    Article  PubMed  CAS  Google Scholar 

  • Kaizer RR, Correa MC, Gris LR, da Rosa CS et al (2008) Bohrer D, Morsch VM, Schetinger MR. Effect of long-term exposure to aluminum on the acetylcholinesterase activity in the central nervous system and erythrocytes. Neurochem Res 33:2294–2301

    Article  PubMed  CAS  Google Scholar 

  • Katz ML, Gao CL, Tompkins JA, Bronson RT et al (1995) Mitochondrial ATP synthase subunit c stored in hereditary ceroid-lipofuscinosis contains trimethyl-lysine. Biochem J 310:887–892

    PubMed  CAS  Google Scholar 

  • Kiray M, Bagriyanik HA, Pekcetin C, Ergur BU et al (2006) Deprenyl and the relationship between its effects on spatial memory, oxidant stress and hippocampal neurons in aged male rats. Physiol Res 55:205–212

    PubMed  CAS  Google Scholar 

  • Kitani K, Minami C, Isobe K, Maehara K (2002) Why (--) deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Aging Dev 123:1087–1100

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Taha A, Sharma D, Kale RK et al (2008) Effect of dehydroepiandrosterone (DHEA) on monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in aging rat brain regions. Biogerontology 9:235-246

    Article  PubMed  CAS  Google Scholar 

  • Levesque L, Mizzen CA, McLachlan DR, Fraser PE (2000) Ligand specifc effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res 877:191–202

    Article  PubMed  CAS  Google Scholar 

  • Low S, Lengsfeld AM, Wieland T (1974) Prevention by aging or by cytochalasin B of phalloidin stimulated formation of microfilaments in cell membrane preparations of rat liver. Histochemistry 38:253–258

    Article  PubMed  CAS  Google Scholar 

  • Mahdi AA, Annarao S, Tripathi S, Nawab A et al. (2008) Correlation of age-related metabonomic changes in 1H NMR serum and urine profiles of rats with cognitive function. Open Magn Resonance 1:71–76

    Article  CAS  Google Scholar 

  • Markesberry WR, Ehmann WD, Alaudin M, Hoosain T (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:19–28

    Article  Google Scholar 

  • Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205–235

    Article  PubMed  CAS  Google Scholar 

  • Mooradian AD (1988) Effect of aging on the blood brain-barrier. Neurobiol Aging 9:31–39

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Harris PL, Zhu X, Santos MS et al (2007) Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimers Dis 12:195–206

    PubMed  CAS  Google Scholar 

  • Munkres K, Rana RS (1978) Antioxidants prolong life span and inhibit the senescence-dependent accumulation of fluorescent pigment (lipofuscin) in clones, of Podospora anserina. Mech Aging Dev 7:407–415

    Article  PubMed  CAS  Google Scholar 

  • Nandy K, Bourne GH (1966) Effect of centrophenoxine on the lipofuscin pigments in the neurones of senile guinea-pigs. Nature 210:313–314

    Article  PubMed  CAS  Google Scholar 

  • Nasiadek M, Chmielnicka J (2000) Interaction of aluminum with exogenous and endogenous iron in the organism of rats. Ecotoxicol Environ Saf 45:284–290

    Article  PubMed  CAS  Google Scholar 

  • Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:111–115

    Article  Google Scholar 

  • Ng Ying Kin NM, Palo J, Haltia M and Wolfe LS (1983) High levels of brain dolichols in neuronal ceroid-lipofuscinosis and senescence. J Neurochem 40:1465–1473

    Article  CAS  Google Scholar 

  • Nunomura A, Miyagishi T (1993) Ultrastructural observations on neuronal lipofuscin (age pigment) and dense bodies induced by a proteinase inhibitor, leupeptin, in rat hippocampus. Acta Neuropathol 86:319–328

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S et al (1999) 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem 274:23787–23793

    Article  PubMed  CAS  Google Scholar 

  • Oteiza PL, Keen CL, Han B, Golub MS (1993) Aluminium accumulation and neurotoxicity in swiss-webster mice after long-term dietary exposure to aluminium and citrate. Metabolism 42:1296–1300

    Article  PubMed  CAS  Google Scholar 

  • Patro N, Sharma SP, Patro IK (1992) Lipofuscin accumulation in aging myocardium & its removal by meclophenoxate. Indian J Med Res 96:192–198

    PubMed  CAS  Google Scholar 

  • Peters C, Bayer MJ, Buhler S, Andersen JS et al (2001). Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    Google Scholar 

  • Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I (2011) Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 96(1):87-95

    Article  PubMed  Google Scholar 

  • Sekhon SS, Andrews JM, Maxwell DS (1969) Accumulation and development of lipofuscin pigment in the aging central nervous system of the mouse. J Cell Biol 43:123a

    Article  Google Scholar 

  • Singh HK, Dhawan BN (1997) Neuropsychopharmacological effects of the ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Indian J Pharmacol 29:S359–365

    Google Scholar 

  • Struys-Ponsar C, Florence A, Gauthier A, Crichton RR et al (1993) Degeneration changes induced in the rat brain by administration of aluminum citrate: a model for the study of cerebral aging involution. Behav Process 29:113–114

    Article  Google Scholar 

  • Sulzer D, Mosharov E, Talloczy Z, Zucca FA et al (2008) Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 106:24–36

    Article  PubMed  CAS  Google Scholar 

  • Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O et al (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17:431–439

    Article  PubMed  CAS  Google Scholar 

  • Tanner A, Shen BH, Dice JF (1997) Turnover of F1F0-ATP synthase subunit 9 and other proteolipids in normal and Batten disease fibroblasts. Biochim Biophys Acta 1361:251–262

    Article  PubMed  CAS  Google Scholar 

  • Terman A, Brunk UT (1998) Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech Aging Dev104;277–291

    Google Scholar 

  • Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404

    CAS  Google Scholar 

  • Terman A, Sandberg S (2002) Proteasome inhibition enhances lipofuscin formation. Ann N Y Acad Sci 973:309–312

    Article  PubMed  CAS  Google Scholar 

  • Tokutake S (1997) Accumulation of aluminum and silicon in lipofuscin granules suggests retardation of blood-brain barrier function by aging. Ann N Y Acad Sci 826:510–512

    Article  PubMed  CAS  Google Scholar 

  • Tripathi S, Somashekar BS, Mahdi AA, Gupta A et al (2008) Aluminum mediated metabolic changes in rat serum and urine: a proton magnetic resonance study. J Bio Mol Toxicol 22:119–127

    Article  CAS  Google Scholar 

  • Tripathi S, Mahdi AA, Nawab A, Chander R et al (2009) Influence of age on aluminium induced lipid peroxidation and neurolipofuscin in frontal cortex of rat brain: a behavioral, biochemical and ultrastructural study. Brain Res 1253:107–116

    Article  PubMed  CAS  Google Scholar 

  • Tripathi S, Mahdi AA, Hasan M, Mitra K et al (2011) Protective potential of Bacopa monniera (Brahmi) extract on aluminum induced cerebellar toxicity and associated neuromuscular status in aged rats. Cell Mol Biol (Noisy-le-grand) 57:3–15

    Google Scholar 

  • Tyynela J, Sohar I, Sleat DE, Gin RM et al (2000) A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J 19:2786–2792

    Article  PubMed  CAS  Google Scholar 

  • Vander VGB, Marani E, Tio S, De Wolff FA (1991) Aluminum neurotoxicity. Prog Histochem Cytochem 23:235–242

    Article  Google Scholar 

  • Varkonyi T, Zoltan OT, Foldi M (1970) Studies on the brain edema induced by triethyltinsulfate in rats. 8. The effect of theophylline on the fine structural alterations in experimental triethyltinsulfate-induced poisoning in rats. Arzneimittelforschung 20:1594–1595

    PubMed  CAS  Google Scholar 

  • Vohra BP, Sharma SP, Kansal VK, Gupta SK (2001) Effect of Maharishi Amrit Kalash an ayurvedic herbal mixture on lipid peroxidation and neuronal lipofuscin accumulation in aging guinea pig brain. Indian J Exp Biol 39:355–359

    PubMed  CAS  Google Scholar 

  • Yokel RA (2006) Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–53

    PubMed  Google Scholar 

  • Yoon Y, McNiven MA (2001) Mitochondrial division: new partners in membrane pinching. Curr Biol 11:R67–70

    Article  PubMed  CAS  Google Scholar 

  • Zatta P, Lucchini R, Van RSJ, Taylor A et al (2003) The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull 62:15–28

    Article  PubMed  CAS  Google Scholar 

  • Zeeca L, Gallorini M, Schunemann V, Trautwein AX et al (2001) Iron, neuromelanin and ferritin content in the substancia nigra of normal subjects at different ages: consequence for iron storage and neurodegenerative processes. J Neurochem 76:1766–1733

    Article  Google Scholar 

  • Zhu JH, Horbinski C, Guo F, Watkins S et al (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Indian National Science Academy, New Delhi for sanctioning Honorary Scientist Scheme, to one of us (MH) and to Indian Council of Medical Research, New Delhi. Authors will also thank to Era’s Lucknow Medical College, Lucknow, India for providing facilities during research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hasan, M., Tripathi, S., Mahdi, A.A. (2012). Neurolipofuscin in Aging and Aluminum-Induced Aging: Possible Therapeutic Interventions. In: Thakur, M., Rattan, S. (eds) Brain Aging and Therapeutic Interventions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5237-5_9

Download citation

Publish with us

Policies and ethics