Skip to main content

Understanding Mechanism of Action of Herbal Drugs in Age Related Degenerative Brain Disorders

  • Chapter
  • First Online:
Book cover Brain Aging and Therapeutic Interventions

Abstract

In this review, we will briefly introduce preventive strategies represented by selected plants which are also popularly used by different traditional medicines and have scientific evidences of possible alternative therapeutic value for neuroprotection. Among these commonly used in most traditional medicines of China and India are Gingko biloba, Panax ginseng, Curcuma longa, Withania somnifera (WS) etc. In addition, scientific evidences of usefulness of Vitis vinifera (Grapes) as red wine, Coffee sp and Camelia sinensis (Tea) will be discussed. Here, we will also discuss in detail the possible use of WS as potential candidate for treatment of AD. Clinical trials and animal research supported the use of WS for treatment of anxiety, cognitive and neurological disorders, senile dementia, Alzheimer’s (AD) and Parkinson’s disease (PD), and as antioxidant and anti-inflammatory agent. This might be important in suggesting therapeutic implications of WS in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB, Harikumar KB (2008) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59

    Article  PubMed  Google Scholar 

  • Agorogiannis EI, Agorogiannis GI, Papadimitriou A, Hadjigeorgiou GM (2004) Protein misfolding in neurodegenerative diseases. Neuropathol Appl Neurobiol 30:215–224

    Article  PubMed  CAS  Google Scholar 

  • Ascherio A, Zhang SM, Hernan MA (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004) Free radicals and aging.Trends Neurosci 23:209–216

    Google Scholar 

  • Bastianetto S, Zhang WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720

    Article  PubMed  CAS  Google Scholar 

  • Blanchet, J. Longpré, F., Bureau, G., Morisette, M.; DiPaolo, T., Bronchti, G., Martinoli, M.G. (2008) Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Progr Neuropsychopharmacol Biol Psych 32:1243–1250

    Article  CAS  Google Scholar 

  • Birks J, Grimley EJ (2009) Ginkgo biloba for cognitive impairment and dementia.Cochrane Database Syst Rev 1:CD003120

    Google Scholar 

  • Bhattacharya SK, Muruganandam AV (2003) Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav 75:547–55

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya A, Ramanathan M, Ghosal S et al. (2000) Effect of Withania somnifera glycowithanolites on iron induced hepatotoxocity in rats. Phytother Res 14:568–570

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar M (2009) Novel leads from herbal drugs for neurodegenerative diseases. In: Ramawat KG (ed) Herbal drugs: ethanomedicine to modern medicine. Springer, Berlin, pp 221–238

    Google Scholar 

  • Bhatnagar M, Sisodia SS, Bhatnagar R (2006) Antiulcer and antioxidant activity of Asparagus racemosus WIILD and Withania somnifera DUNN in rats. Ann N Y Acad Sci 1056:261–278

    Article  Google Scholar 

  • Bhatnagar M, Sharma D, Salvi M (2009) Neuroprotective effects of Withania somnifera dunal.: a possible mechanism. Neurochem Res 34:1975–1983

    Article  PubMed  CAS  Google Scholar 

  • Campbell S, Macqueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29:417–426

    PubMed  Google Scholar 

  • Cauli O, Morelli M (2005) Caffeine and the dopaminergic system. Behav Pharmacol 16:63–77

    Article  PubMed  CAS  Google Scholar 

  • Chowdhry MT, Yousuf S, Nawajz SA, Ahmed S, Rahman AU (2004) Cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull 52:1358–1361

    Article  Google Scholar 

  • Chandrasekaran K, Mehrabian Z, Spinnewyn B, Chinopoulos C, Drieu K, Fiskum G (2003) Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry 36:89–94

    Google Scholar 

  • Chen F, Eckman EA, Eckman CB (2006) Reductions in levels of the Alzheimer’s amyloid β peptide after oral administration of ginsenosides. FASEB J 20:1269–1271

    Article  PubMed  CAS  Google Scholar 

  • Coimbra S, Castro E, Rocha-Pereira P, Rebelo I, Rocha S, Santos-Silva A (2006) The effect of green tea in oxidative stress. Clin Nutr 25:790–796

    Article  PubMed  CAS  Google Scholar 

  • Cole GM, Morihara T, Lim GP, Yang F, Begum A, Frautschy SA (2004) NSAID and antioxidant prevention of Alzheimer’s disease: lessons from in vitro and animal models. Ann NY Acad Sci 1035:68–84

    Article  PubMed  CAS  Google Scholar 

  • DeKosky ST, Fitzpatrick A, Ives DG, Saxton J, Williamson J, Lopez OL, Burke G, Fried L, Kuller LH, Robbins J, Tracy R, Woolard N, Dunn L, Kronmal R, Nahin R, Furberg C (2006) The Ginkgo evaluation of memory (GEM) study: design and baseline data of a randomized trial of Ginkgo biloba extract in prevention of dementia. Contemp Clin Trials 27:238–253

    Article  PubMed  Google Scholar 

  • De Oliveira RMW, Deakin JF, Guimaraes FS (2000) Neuronal nitric oxide synthase (NOS) expression in the hippocampal formation of patients with schizophrenia and affective disorder. J Psychopharmacol 14:8

    Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  PubMed  CAS  Google Scholar 

  • Echeverry MB, Guimarães FS, Del Bel EA (2004) Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience 125:981–993

    Article  PubMed  CAS  Google Scholar 

  • Ganzera M, Choudhary MI, Khan IA (2003) Quantitative HPLC analysis of withanolides in Withania somnifera. Fitoterapia 74:68–76

    Article  PubMed  CAS  Google Scholar 

  • Gupta GL, Rana AC (2007) Withania somnifera (Ashwagandha): a review. Pharmacogn Rev 1:129–136

    Google Scholar 

  • Gupta SK, Dua A, Vohra BP (2003) Withania somnifera (Ashwagandha) attenuates antioxidant defense in aged spinal cord and inhibits copper induced lipid peroxidation and protein oxidative modifications. Drug Metabol Drug Interact 19:211–222

    Google Scholar 

  • Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, Kim M (2008) An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur J Neurol 15:865–868

    Google Scholar 

  • Harwey BH, Retief R, Korff A et al. (2006) Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT 2A/C receptors. Metab Brain Dis 21:211–220

    Article  Google Scholar 

  • Haque AM, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O (2006) Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nut 136:1043–1047

    CAS  Google Scholar 

  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122

    Article  PubMed  Google Scholar 

  • Jain S, Shukla SD, Sharma K et al. (2001) Neuroprotective Effects of Withania somnifera Dunn in hippocampal sub-regions of female albino rat. Phytother Res 15:544–548

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2004) Preclinical evidence for neuroprotection with monoamine oxidase-B inhibitors in Parkinson’s disease. Neurology 63:13–22

    Article  Google Scholar 

  • Joca SR, Guimaraes FS (2006) Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant like effects. Psychopharmacology (Berl) 185:298–305

    Article  CAS  Google Scholar 

  • Joo SS, Yoo YM, Ahn BW, Nam SY, Kim YB, Hwang KW, Lee DI (2008) Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biol Pharm Bull 31:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Kluchova D, Schmidtova K, Rybarova S, Lovasova K, Pomfy M, Prosbova T, Vatlak A (2000) Partial colocalization of NADPH-diphorase and acetylcholine esterase positivity in spinal cord neurons. Physiol Res 49:151–155

    PubMed  CAS  Google Scholar 

  • Khokhar S, Magnusdottir SG (2002) Total phenol, catachin and caffeine content of teas commonly consumed in the United Kingdom. J Agric Food Chem 50:565–570

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I (2006) Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr 83:355–361

    PubMed  CAS  Google Scholar 

  • Law A, Gauthier S, Quirion R (2001a) Say NO to Alzheimer’s disease: putative links between nitric oxide and dementia of Alzheimer’s type. Brain Res Rev 1:73–96

    Article  Google Scholar 

  • Law A, Gauthier S, Quirion R (2001b) Neuroprotective and neurorescuing effects of isoform-specific nitric oxide synthatase inhibitors, nitric oxide scavengers and antioxidant against beta amyloid activity. Br J Pharmacol 133:1114–1124

    Article  CAS  Google Scholar 

  • Lewitt PA (2008) Levodopa for the treatment of Parkinson’s disease. N Engl J Med 359:2468–2476

    Article  PubMed  CAS  Google Scholar 

  • Linn GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    Google Scholar 

  • Luo Y, Smith J, Paramasivam V, Burdick A, Curry K, Buford J, Khan I, Netzer W, Xu H, Butko P (2002) Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci U S A 99:12197–12202

    Article  PubMed  CAS  Google Scholar 

  • Maia L, de Mendonca A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:377–382

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37:304–317

    Article  PubMed  CAS  Google Scholar 

  • Masood A, Banerji B, Vijayan VK et al. (2004) Pharmacological and biochemical studies on the possible role of nitric oxide in stress adaptation in rats. Eur J Pharmacol 493:1111–1115

    Article  Google Scholar 

  • Matsushita H, Takeuchi Y, Kawata M et al. (2001) Distribution of NADPH Diaphorase positive neurons in the mouse brain: differences from previous finding in the rat brain and comparison with the distribution of serotonergic neurons. Acta Histochem Cytochem 34:235–257

    Article  CAS  Google Scholar 

  • Mclatchey WC, Mahady G, Bennett BC, Shiels L, Savo V (2009) Ethnobotany as a pharmacological research tool and recent developments in CNS-active natural products from ethnobotanical sources. Pharmacol Therapeut 12:239–254

    Article  Google Scholar 

  • McEwen BS, Magarinos AM, Reagan LP (2002) Structural plasticity and tianeptine: cellular and molecular targets. Eur Psychiatry 17:318–330

    Article  PubMed  Google Scholar 

  • Mcleod TM, Lopez-Feguero AL, Lopez-Feguero MO (2001) Nitric oxide, stress and depression. Psychopharmacol Bull 35:24–41

    PubMed  CAS  Google Scholar 

  • Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta peptide. Neurosci Res 45:117–127

    Article  PubMed  CAS  Google Scholar 

  • Menken M, Munsat TL, Toole JF (2000) The global burden of disease study: implications for neurology. Arch Neuro 57:418–420

    Article  CAS  Google Scholar 

  • Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for therapeutic use of Withania somnifera (ashwagandha): a review.Altern Med Rev 5:334–346

    CAS  Google Scholar 

  • Nikam S, Nikam P, Ahaley SK, Sontakke AV (2009a) Oxidative stress in Parkinson’s disease. Indian J Clin Biochem 24:98–101

    Article  CAS  Google Scholar 

  • Nikam S, Nikam P, Ahaley SK (2009b) Role of free radical and antioxidant imbalance in pathogenesis of Parkinson’s disease. Biomed Res 20:55–58

    Article  CAS  Google Scholar 

  • Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease. Neurology 72:1–13.

    Article  Google Scholar 

  • Okere CO, Waterhouse BD (2006) A cute restraint increases NADPH-diaphorase staining in distinct subregions of the rat dorsal raphe nucleus: implications for raphe serotonergic and nitrergic transmission. Brain Res 1119:174–181

    Article  PubMed  CAS  Google Scholar 

  • Persson CM, Wallin AK, Levander S, Minthon L (2009) Changes in cognitive domains during three years in patients with Alzheimer’s disease treated with donepezil. BMC Neurol 9:7

    Article  PubMed  Google Scholar 

  • Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Pinder RM (2009) Does wine prevents dementia? Int J Wine Res 1:41–152

    Article  CAS  Google Scholar 

  • Prakash D, Suri S, Upadhyay G et al. (2007) Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr 58:18–28

    Article  PubMed  CAS  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  PubMed  CAS  Google Scholar 

  • Prior RL, Cao G (2000) Antioxidant phytochemicals in fruits and vegetables: diet and health implications. Hortic Sci 35:588–592

    CAS  Google Scholar 

  • Rivière C, Richard T, Vitrac X, Mérillon JM, Valls J, Monti JP (2008) New polyphenols active on β -amyloid aggregation. Bioorg Medic Chem Lett 18:828–831

    Article  Google Scholar 

  • Rudakewich M, Ba F, Benishin CG (2001) Neurotrophic and neuroprotective actions of ginsenoside Rb1 and Rg1. Planta Med 67:533–537

    Article  PubMed  CAS  Google Scholar 

  • Schliebs R, Liebmann A, Bhattacharya SK et al. (1997) Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and gabaergic markers in rat brain. Neurochem Int 30:181–190

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  • Shastry BS (2003) Neurodegenerative disorders of protein aggregation. Neurochem Int 43:1–7

    Article  PubMed  CAS  Google Scholar 

  • Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–545

    Article  PubMed  CAS  Google Scholar 

  • Suk K (2005) Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases: a focus on traditional medicines and flavonoids. Neurosignals 14:23–33

    Article  PubMed  CAS  Google Scholar 

  • Talesa VN (2001) Acetylcholineste in Alzheimer’s disease. Mech Aging Dev 122:1961–1969

    Article  PubMed  CAS  Google Scholar 

  • Terriot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291:317–324

    Article  Google Scholar 

  • Uno K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  Google Scholar 

  • Van Kampen J, Robertson H, Hagg T, Drobitch R (2003) Neuroprotective actions of the ginseng extracts G115 in two rodent models of Parkinson’s disease. Exp Neurol 184:521–529

    Article  PubMed  Google Scholar 

  • Vellas B, Andrieu S, Ousset PJ, Ouzid M, Mathiex-Fortunet H (2006) The GuidAge study.Methodological issues. A 5-year double-blind randomized trial of the efficacy of EGb 761® for prevention of Alzheimer disease in patients over 70 with a memory complaint. Neurology 67:6–11

    Google Scholar 

  • Vinutha B, Prasantha HD, Salma K, Sreej SL, Pratiti D, Padmaja R, Radhika S, Amit A, Warulu KV, Deepak M (2007) Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethanopharmacol 109:359–363

    Article  CAS  Google Scholar 

  • Weinreb O, Mandel S, Amit T, Youdim MB (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  CAS  Google Scholar 

  • Yao Z, Drieu K, Papadopoulos V (2001) The Ginkgo biloba extract EGb761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid- derived diffusible neurotoxic ligands. Brain Res 889:181–190

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Zheng JC, Liu P, Zhang SF, Xu JY, Bai LM (2007) Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull 23:125–130

    Article  PubMed  CAS  Google Scholar 

  • Yun TK (2001) Brief introduction of Panax ginseng. J Korean Med Sci 16:3–5

    Google Scholar 

  • Zhang LJ, Wu CF, Meng XL, Yuan D, Cai XD, Wang QL (2008) Comparison of inhibitory potency of three different curcuminoid pigments on nitric oxide and tumor necrosis factor production of rat primary microglia induced by lipopolysaccharide. Neurosci Lett 447:48–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maheep Bhatnagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bhatnagar, M., Jain, A., Jaiswal, N., Sharma, C., Suvalka, P. (2012). Understanding Mechanism of Action of Herbal Drugs in Age Related Degenerative Brain Disorders. In: Thakur, M., Rattan, S. (eds) Brain Aging and Therapeutic Interventions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5237-5_11

Download citation

Publish with us

Policies and ethics