Skip to main content

Natural Language Processing – The Basics

  • Chapter
  • First Online:
Pediatric Biomedical Informatics

Abstract

Natural language processing (NLP) emerged in the 1900s to support the wartime efforts. It’s dubious performance, however, slowed research initiatives until the 1960s when advances in machine learning provided novel approaches to text analysis. Increased processing speed and widespread availability of digital text accelerated this trend in the late 1990s. At the present time, there are extensive efforts to use NLP on clinical text and to incorporate this technology into software applications that support clinical care. In this chapter, the first of two about NLP, we will present: basic principles of NLP, the lexical resources required to produce high quality output from clinical text, the process (called annotation) of creating and NLP gold standard, the statistical methods used to evaluate and the role of shared tasks for evaluating and facilitating standardization in the field. Subsequent chapters will discuss ongoing research dedicated improving the quality and utility of NLP in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allbright D, et al. Towards comprehensive syntactic and semantic annotations. Submitted for publication, is under review (2012)

    Google Scholar 

  • AMIA Proceedings Library. (n.d.) [cited 2012 Apr 5]. Available from: http://proceedings.amia.org/

  • Association of Computational Linguistics (ACL), Special Interest Group on Natural Language Learning (SIGNLL). CoNLL: the conference of SIGNLL. December 9, 2010 [cited 2012 June 1]. Available from: http://ifarm.nl/signll/conll/

  • Baker CF, Fillmore CJ, Lowe JB. The Berkeley FrameNet project. In: Proceedings of the 17th international conference on computational linguistics, vol. 1. Montreal: Association for Computational Linguistics; 1998. p. 86–90.

    Chapter  Google Scholar 

  • Beckwith BA, et al. Development and evaluation of an open source software tool for deidentification of pathology reports. BMC Med Inform Decis Mak. 2006;6:12.

    Article  PubMed  Google Scholar 

  • Brants T. Inter-annotator agreement for a German newspaper corpus. In: Proceedings of the second international conference on language resources and evaluation (LREC 2000), Athens, Greece. Paris: European Language Association; 2000.

    Google Scholar 

  • Bright W. International encyclopedia of linguistics. New York: Oxford University Press; 1992.

    Google Scholar 

  • Brownstein JS, et al. The tell-tale heart: population-based surveillance reveals an association of rofecoxib and celecoxib with myocardial infarction. PLoS One. 2007;2(9):e840.

    Article  PubMed  Google Scholar 

  • Brownstein JS, Freifeld CC, Madoff LC. Influenza A (H1N1) virus, 2009–online monitoring. N Engl J Med. 2009;360(21):2156.

    Article  PubMed  Google Scholar 

  • Chapman WW, Dowling JN. Inductive creation of an annotation schema for manually indexing clinical conditions from emergency department reports. J Biomed Inform. 2006;39(2):196–208.

    Article  PubMed  Google Scholar 

  • Chapman WW, Dowling JN, Hripcsak G. Evaluation of training with an annotation schema for manual annotation of clinical conditions from emergency department reports. Int J Med Inform. 2008;77(2):107–13.

    Article  PubMed  Google Scholar 

  • Chen Y, Mani S, Xu H. Applying active learning to assertion classification of concepts in clinical text. J Biomed Inform. 2012;45(2):265–72.

    Article  PubMed  Google Scholar 

  • Cinchor N. The statistical significance of MUC4 results. In: MUC4’92 proceedings of the 4th conference on message understanding. San Mateo: Morgan Kaufmann; 1992.

    Google Scholar 

  • Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46.

    Article  Google Scholar 

  • Computational Medicine Center (CMC). 2007 international challenge: classifying clinical free text using natural language processing. [cited 2012 June 1]. Available from: http://computationalmedicine.org/challenge/previous

  • Computational Medicine Center (CMC). Suicide notes. [cited 2012 June 12]. Available from: http://computationalmedicine.org/home-0

  • Covey SR. The 7 habits of highly effective people: powerful lessons in personal change. Rev. ed. New York: Free Press; 2004. p. 372.

    Google Scholar 

  • de Marneffe MC, Manning CD. The Stanford typed dependencies representation. In: Coling 2008: proceedings of the workshop on cross-framework and cross-domain parser evaluation. Manchester: Coling 2008 Organizing Committee; 2008. p. 1–8.

    Chapter  Google Scholar 

  • Deleger L, et al. Building Gold Standard Corpora for Medical Natural Language Processing Tasks. In: American Medical Informatics Annual Symposium Proceedings. Chicago, November 1–6, 2012

    Google Scholar 

  • Demner-Fushman D, Chapman WW, McDonald CJ. What can natural language processing do for clinical decision support? J Biomed Inform. 2009;42(5):760–72.

    Article  PubMed  Google Scholar 

  • Denny JC, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26(9):1205–10.

    Article  PubMed  CAS  Google Scholar 

  • Ely JW, et al. Answering physicians’ clinical questions: obstacles and potential solutions. J Am Med Inform Assoc. 2005;12(2):217–24.

    Article  PubMed  Google Scholar 

  • Fellbaum C, Grabowski J, Landes S. Performance and confidence in a semantic annotation task. In: Fellbaum C, editor. WordNet: an electronic lexical database. Cambridge, MA: MIT Press; 1998.

    Google Scholar 

  • Friedman C, Hripcsak G. Evaluating natural language processors in the clinical domain. Methods Inf Med. 1998;37(4–5):334–44.

    PubMed  CAS  Google Scholar 

  • Gale W, Church KW, Yarowsky D. Estimating upper and lower bounds on the performance of word-sense disambiguation programs. In: Proceedings of the 30th annual meeting on Association for Computational Linguistics. Newark/Delaware: Association for Computational Linguistics; 1992. p. 249–56.

    Chapter  Google Scholar 

  • Gardner J, Xiong L. HIDE: an integrated system for health information DE-identification. In: Proceedings of the 21st IEEE international symposium on computer-based medical systems. Los Alamitos: IEEE Computer Society; 2008. p. 254–9.

    Chapter  Google Scholar 

  • Geisser S. Predictive sample reuse method with applications. J Am Stat Assoc. 1975;70(350):320–8.

    Article  Google Scholar 

  • Giacomini KM, Brett CM, et al. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin PharmaTher. 2007;81(3):328–45.

    Google Scholar 

  • Grosso WE, et al. Knowledge modeling at the millennium (The design and evolution of Protégé-2000). In: Twelfth Banff workshop on knowledge acquisition, modeling, and management, Alberta; 1999.

    Google Scholar 

  • Grouin C, et al. Proposal for an extension of traditional named entities: from guidelines to evaluation, an overview. In: Proceedings of the 5th linguistic annotation workshop (LAW V’11). Portland: Association for Computational Linguistics; 2011. p. 92–100.

    Google Scholar 

  • Guidelines for the 2011 TREC Medical Records Track. [cited 2012 June 1]. Available from: http://www-nlpir.nist.gov/projects/trecmed/2011/tm2011.html

  • Gupta D, Saul M, Gilbertson J. Evaluation of a deidentification (De-Id) software engine to share pathology reports and clinical documents for research. Am J Clin Pathol. 2004;121(2):176–86.

    Article  PubMed  Google Scholar 

  • Health Map. [cited 2012 June 1]. Available from: http://www.healthmap.org/en/

  • Hicks J. The potential of claims data to support the measurement of health care quality. Santa Monica: RAND Corporation; 2003.

    Google Scholar 

  • Hripcsak G, Rothschild AS. Agreement, the f-measure, and reliability in information retrieval. J Am Med Inform Assoc. 2005;12(3):296–8.

    Article  PubMed  Google Scholar 

  • i2b2: Informatics for Integrating Biology and the Bedside. 2012 NLP shared task: shared-tasks and workshop on challenges in natural language processing for clinical data. [cited 2012 June 1]. Available from: https://www.i2b2.org/NLP/TemporalRelations/Call.php

  • i2b2: Informatics for Integrating Biology and the Bedside. Datasets. [cited 2012 June 1]. Available from: https://www.i2b2.org/NLP/DataSets/Main.php

  • Jha AK. The promise of electronic records: around the corner or down the road? JAMA. 2011;306(8):880–1.

    Article  PubMed  CAS  Google Scholar 

  • Jones K. Natural language processing: a historical review (Paper). Current issues in Computational Linguistics: in honour of Don Walker. 2001 [cited 2012 June 1]. Available from: http://www.cl.cam.ac.uk/archive/ksj21/histdw4.pdf

  • Jurafsky D, Martin JH. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, Prentice Hall series in artificial intelligence. Upper Saddle River: Prentice Hall; 2000. xxvi, 934 p.

    Google Scholar 

  • Kho AN, et al. Electronic medical records for genetic research: results of the eMERGE consortium. Sci Transl Med. 2011;3(79):79re1.

    Article  PubMed  Google Scholar 

  • Kohane IS. Using electronic health records to drive discovery in disease genomics. Nat Rev Genet. 2011;12(6):417–28.

    Article  PubMed  CAS  Google Scholar 

  • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence. San Mateo: Morgan Kaufmann; 1995. p. 1137–43.

    Google Scholar 

  • Liddy ED. Natural language processing. In: Drake MA, editor. Encyclopedia of library and information science. New York: Marcel Dekker; 2003. p. 2126–36.

    Google Scholar 

  • Luo Z, et al. Extracting temporal constraints from clinical research eligibility criteria using conditional random fields. AMIA Annu Symp Proc. 2011;2011:843–52.

    PubMed  Google Scholar 

  • Marcus MP, Marcinkiewicz MA, Santorini B. Building a large annotated corpus of English: the penn treebank. Comput Linguist. 1993;19(2):313–30.

    Google Scholar 

  • McCarty CA, Chisholm RL, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics. 2011;4:13.

    Google Scholar 

  • Medpedia: an open platform connecting people and information to advance medicine. [cited 2012 June 1]. Available from: http://www.medpedia.com/

  • Melton GB, Hripcsak G. Automated detection of adverse events using natural language processing of discharge summaries. J Am Med Inform Assoc. 2005;12(4):448–57.

    Article  PubMed  Google Scholar 

  • Meyers A, et al. The NomBank project: an interim report. In: HLT-NAACL 2004 Workshop: frontiers in corpus annotation. Boston: Association for Computational Linguistics; 2004.

    Google Scholar 

  • Meystre SM, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008;2008:128–44.

    Google Scholar 

  • Meystre SM, et al. Automatic de-identification of textual documents in the electronic health record: a review of recent research. BMC Med Res Methodol. 2010;10:70.

    Article  PubMed  Google Scholar 

  • Miller GA. WordNet: a lexical database for English. Commun ACM. 1995;38(11):39–41.

    Article  Google Scholar 

  • Miller T, Dligach D, Savova GK. Active learning for coreference resolution. In: BioNLP workshop at the Conference of the North American Association of Computational Linguistics (NACCL), Montreal; 2012.

    Google Scholar 

  • Miltsakaki E, et al. The Penn Discourse Treebank. In: Proceedings of the LREC 2004 fourth international conference on language resources and evaluation, Lisbon, Portugal; 2004. pp. 2237–2240.

    Google Scholar 

  • Moore Slides. (n.d.) [cited 2012 Apr 5]. Available from: http://old-site.clsp.jhu.edu/ws04/calendar/School/Moore_slides.ppt

  • Moore RC. Two paradigms for natural-language processing. In: Cappelli A, Turini F, editors. AI*IA 2003: advances in artificial intelligence: 8th Congress of the Italian Association for Artificial Intelligence, Pisa, Italy, September, 2003: proceedings (Associazione italiana per l’intelligenza artificiale. Congress (8th: 2003: Pisa Italy)). Berlin/New York: Springer; 2003. p. 548.

    Google Scholar 

  • Murff HJ, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 2011;306(8):848–55.

    Article  PubMed  CAS  Google Scholar 

  • National Institutes of Health and National Institute of General Medical Sciences. The NIH Pharmacogenomics Research Network (PGRN). [cited 2012 June 1]. Available from: http://www.nigms.nih.gov/Research/FeaturedPrograms/PGRN/

  • National Research Council. “Recommendations.” Language and machines: computers in translation and linguistics. 1966 [cited 2012 Apr 5]. Available from: http://www.nap.edu/openbook.php?isbn=ARC00.

  • Neamatullah I, et al. Automated de-identification of free-text medical records. BMC Med Inform Decis Mak. 2008;8:32.

    Article  PubMed  Google Scholar 

  • Noreen EW. Computer-intensive methods for testing hypotheses: an introduction. New York: Wiley; 1989.

    Google Scholar 

  • Ogren P. Knowtator: a protégé plug-in for annotated corpus construction. In: Proceedings of the North American chapter of the association for computational linguistics on human language technology. East Stroudsburg: Association for Computational Linguistics; 2006.

    Google Scholar 

  • Ogren PV, Savova GK, Chute C. Constructing evaluation corpora for automated clinical named entity recognition. In: Proceedings of the sixth international conference on language resources and evaluation (LREC’08), Marrakech, Morocco; 2008.

    Google Scholar 

  • Pakhomov SV, Coden A, Chute CG. Developing a corpus of clinical notes manually annotated for part-of-speech. Int J Med Inform. 2006;75(6):418–29.

    Article  PubMed  Google Scholar 

  • Palmer M, Gildea D, Kingsbury P. The proposition bank: an annotated corpus of semantic roles. Comput Linguist. 2005;31(1):71–106.

    Article  Google Scholar 

  • Palmer M, Dang HT, Fellbaum C. Making fine-grained and coarse-grained sense distinctions, both manually and automatically. Nat Lang Eng. 2007;13(02):137–63.

    Google Scholar 

  • Palmer M, Xue N. Linguistic annotation. In: Clark A, Fox C, Lappin S, editors. The handbook of computational linguistics and natural language processing. Chichester/Malden: Wiley-Blackwell; 2010. p. 13 and 21.

    Google Scholar 

  • Penn Treebank Project. [cited 2012 June 1]. Available from: http://www.cis.upenn.edu/∼treebank/

  • Pestian JP, et al. A shared task involving multi-label classification of clinical free text. In: Proceedings of the workshop on BioNLP 2007: biological, translational, and clinical language processing. Prague: Association for Computational Linguistics; 2007. p. 97–104.

    Chapter  Google Scholar 

  • Poesio M. Discourse annotation and semantic annotation in the GNOME corpus. In: Proceedings of the 2004 ACL workshop on discourse annotation. Barcelona: Association for Computational Linguistics; 2004. p. 72–9.

    Chapter  Google Scholar 

  • Poesio M, Vieira R. A corpus-based investigation of definite description use. Comput Linguist. 1998;24(2):183–216.

    Google Scholar 

  • PropBank Project. [cited 2012 June 1]. Available from: http://verbs.colorado.edu/~mpalmer/projects/ace.html

  • Pustejovsky J, Stubbs A. Natural language annotation for machine learning. Sebastopol: O’Reilly Media; 2012.

    Google Scholar 

  • Pustejovsky J, et al. The TIMEBANK Corpus. In: Proceedings of the Corpus Linguistics, Lancaster, UK; 2003. pp. 647–656.

    Google Scholar 

  • Resnik P, Lin J. Evaluation of NLP systems. In: Clark A, Fox C, Lappin S, editors. The handbook of computational linguistics and natural language processing. Chichester/Malden: Wiley-Blackwell; 2010. p. 271–96.

    Chapter  Google Scholar 

  • Roberts A, et al. Building a semantically annotated corpus of clinical texts. J Biomed Inform. 2009;42(5):950–66.

    Article  PubMed  Google Scholar 

  • SENSEVAL: evaluation exercises for the semantic analysis of text. [cited 2012 June 1]. Available from: http://www.senseval.org/

  • Settles B. Active learning literature survey, in computer sciences technical report 1648. Madison: University of Wisconsin-Madison; 2009.

    Google Scholar 

  • Shared Annotated Resource for the Clinical Domain (ShaRe). Clinical NLP annotation. [cited 2012 June 1]. Available from: https://www.clinicalnlpannotation.org/index.php/Main_Page

  • SHARPn Main Page. Strategic Health IT Advanced Research Projects (SHARP): Research Focus Area 4. (n.d.) [cited 2012 Apr 5]. Available from: http://informatics.mayo.edu/sharp/index.php/Main_Page

  • Solti I, et al. Automated classification of radiology reports for acute lung injury: comparison of keyword and machine learning based natural language processing approaches. Proceedings (IEEE Int Conf Bioinformatics Biomed). 2009;2009:314–19.

    Google Scholar 

  • South BR, et al. Developing a manually annotated clinical document corpus to identify phenotypic information for inflammatory bowel disease. BMC Bioinformatics. 2009;10 Suppl 9:S12.

    Article  PubMed  Google Scholar 

  • Sparck Jones K, Galliers JR. Evaluating natural language processing systems: an analysis and review, Lecture notes in computer science. Berlin/New York: Springer; 1995. xv, 228 p.

    Book  Google Scholar 

  • Text Analysis Conference (TAC). [cited 2012 June 1]. Available from: http://www.nist.gov/tac/

  • Text REtrieval Conference (TREC). [cited 2012 June 1]. Available from: http://trec.nist.gov/

  • The British National Corpus, version 3 (BNC XML Edition). Distributed by Oxford University Computing Services on behalf of the BNC Consortium; 2007. URL: http://www.natcorp.ox.ac.uk/

  • Thomas SM, et al. A successful technique for removing names in pathology reports using an augmented search and replace method. Proc AMIA Symp. 2002;2002:777–81.

    Google Scholar 

  • THYME: Temporal history of your medical events. [cited 2012 June 1]. Available from: http://clear.colorado.edu/compsem/index.php?page=endendsystems&sub=temporal

  • TimeML specifications. [cited 2012 June 1]. Available from: http://www.timeml.org/site/publications/specs.html

  • Tomanek K, Hahn U. Timed annotations – enhancing MUC7 metadata by the time it takes to annotate named entities. In: Proceedings of the linguistic annotation workshop. Singapore: Association for Computational Linguistics; 2009.

    Google Scholar 

  • U.S. Department of Health and Human Services. Project information 5R01GM090187-03. (n.d.) [cited 2012 Apr 5]. Available from: http://projectreporter.nih.gov/project_info_description.cfm?aid=8133360

  • Uzuner O. Recognizing obesity and comorbidities in sparse data. J Am Med Inform Assoc. 2009;16(4):561–70.

    Article  PubMed  Google Scholar 

  • Uzuner O, Luo Y, Szolovits P. Evaluating the state-of-the-art in automatic de-identification. J Am Med Inform Assoc. 2007;14(5):550–63.

    Article  PubMed  Google Scholar 

  • Uzuner O, et al. Identifying patient smoking status from medical discharge records. J Am Med Inform Assoc. 2008;15(1):14–24.

    Article  PubMed  Google Scholar 

  • Uzuner O, et al. Community annotation experiment for ground truth generation for the i2b2 medication challenge. J Am Med Inform Assoc. 2010;17(5):519–23.

    Article  PubMed  Google Scholar 

  • Uzuner O, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 2011;18(5):552–6.

    Article  PubMed  Google Scholar 

  • Uzuner O, et al. Evaluating the state of the art in coreference resolution for electronic medical records. J Am Med Inform Assoc. 2012;19(5):786–91.

    Article  PubMed  Google Scholar 

  • Wiebe J, Wilson T, Cardie C. Annotating expressions of opinions and emotions in language. Lang Resour Eval. 2005;39(2):165–210.

    Article  Google Scholar 

  • WordNet: a lexical database for English. Princeton: Princeton University. Available from: http://wordnet.princeton.edu/

  • Yetisgen-Yildiz M, Solti I, Xia F. Using Amazon’s Mechanical Turk for annotating medical named entities. AMIA Annu Symp Proc. 2010;2010:1316.

    PubMed  Google Scholar 

  • Zampolli A, et al. Current issues in computational linguistics : in honour of Don Walker. Linguistica computazionale. Pisa/Norwell: Giardini ; Distributed in the U.S.A. and Canada by Kluwer Academic Publishers; 1994. xxv, 595 p.

    Google Scholar 

  • Zhan C, Miller MR. Administrative data based patient safety research: a critical review. Qual Saf Health Care. 2003;12 Suppl 2:ii58–63.

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Savova’s work was supported in part by NIH grants U54LM008748 and 1U01HG006828. Drs. Deleger’s and Solti’s work was supported in part by NIH grant 5R00LM010227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Pestian Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pestian, J.P., Deleger, L., Savova, G.K., Dexheimer, J.W., Solti, I. (2012). Natural Language Processing – The Basics. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5149-1_9

Download citation

Publish with us

Policies and ethics