Skip to main content

Transcriptional Networks – Control of Lung Maturation

  • Chapter
  • First Online:
Pediatric Biomedical Informatics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 2))

  • 1155 Accesses

Abstract

This chapter provides examples of the application of tools of bioinformatics and functional genomics to integration of large-scale gene expression data with array independent genomic information to reveal transcriptional regulatory networks. The focus is on networks that control lung maturation and surfactant homeostasis, which can serve as a prototype for study of other complex biological processes. Prenatal maturation of the respiratory system is fundamentally important for the transition to airbreathing at birth. Lung immaturity is a major cause of morbidity and mortality in newborn infants and underlies the pathogenesis of acute respiratory failure (respiratory distress syndrome) and chronic respiratory dysfunction (bronchopulmonary dysplasia), associated with preterm birth. The immaturity of type II alveolar epithelial cells and the lack of pulmonary surfactant lipids and proteins that are needed to reduce surface tension in the alveolar saccules cause atelectasis and respiratory insufficiency after preterm birth. Lung maturation includes diverse structural, cellular, and biochemical changes in lung architecture and function that are precisely coordinated by genetic and environmental factors that synchronize the length of gestation with the process of lung maturation. Analysis of lung specific gene deletion and mutation mouse models, using tools of functional genomics, permits the identification of new genes and pathways controlling surfactant lipid homeostasis and lung maturation. The signaling and transcriptional mechanisms that influence lung growth and maturation needed to support the abrupt adaptation to airbreathing at birth are of considerable interest, and will provide a rational basis for the design of new treatment strategies for neonatal pulmonary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelini C, Cutillo L, De Canditiis D, Mutarelli M, Pensky M. BATS: a Bayesian user-friendly software for analyzing time series microarray experiments. BMC Bioinform. 2008;9:415.

    Article  Google Scholar 

  • Arda HE, Walhout AJ. Gene-centered regulatory networks. Brief Funct Genomics. 2010;9(1):4–12.

    Article  PubMed  CAS  Google Scholar 

  • Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron. 2005;45(2):207–21.

    Article  PubMed  CAS  Google Scholar 

  • Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959;97(5, Part 1):517–23.

    PubMed  CAS  Google Scholar 

  • Bennett MK, Lopez JM, Sanchez HB, Osborne TF. Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem. 1995;270(43):25578–83.

    Article  PubMed  CAS  Google Scholar 

  • Besnard V, Wert SE, Stahlman MT, Postle AD, Xu Y, Ikegami M, Whitsett JA. Deletion of scap in alveolar type II cells influences lung lipid homeostasis and identifies a compensatory role for pulmonary lipofibroblasts. J Biol Chem. 2009;284(6):4018–30.

    Article  PubMed  CAS  Google Scholar 

  • Besnard V, Wert SE, Ikegami M, Xu Y, Heffner C, Murray SA, Donahue LR, Whitsett JA. Maternal synchronization of gestational length and lung maturation. PLoS One. 2011;6(11):e26682.

    Article  PubMed  CAS  Google Scholar 

  • Bonner AE, Lemon WJ, You M. Gene expression signatures identify novel regulatory pathways during murine lung development: implications for lung tumorigenesis. J Med Genet. 2003;40(6):408–17.

    Article  PubMed  CAS  Google Scholar 

  • Bridges JP, Xu Y, Na CL, Wong HR, Weaver TE. Adaptation and increased susceptibility to infection associated with constitutive expression of misfolded SP-C. J Cell Biol. 2006;172(3):395–407.

    Article  PubMed  CAS  Google Scholar 

  • Bruno MD, Korfhagen TR, Liu C, Morrisey EE, Whitsett JA. GATA-6 activates transcription of surfactant protein A. J Biol Chem. 2000;275(2):1043–9.

    Article  PubMed  CAS  Google Scholar 

  • Bullinger L, Valk PJ. Gene expression profiling in acute myeloid leukemia. J Clin Oncol. 2005;23(26):6296–305.

    Article  PubMed  CAS  Google Scholar 

  • Burri PH. Fetal and postnatal development of the lung. Annu Rev Physiol. 1984;46:617–28.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–11.

    Article  PubMed  CAS  Google Scholar 

  • Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet. 2005;14(13):1709–25.

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Satten GA. A signed-rank test for clustered data. Biometrics. 2008;64(2):501–7.

    Article  PubMed  Google Scholar 

  • Dave V, Childs T, Xu Y, Ikegami M, Besnard V, Maeda Y, Wert SE, Neilson JR, Crabtree GR, Whitsett JA. Calcineurin/Nfat signaling is required for perinatal lung maturation and function. J Clin Invest. 2006;116(10):2597–609.

    PubMed  CAS  Google Scholar 

  • DeFelice M, Silberschmidt D, DiLauro R, Xu Y, Wert SE, Weaver TE, Bachurski CJ, Clark JC, Whitsett JA. TTF-1 phosphorylation is required for peripheral lung morphogenesis, perinatal survival, and tissue-specific gene expression. J Biol Chem. 2003;278(37):35574–83.

    Article  PubMed  CAS  Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3.

    Article  PubMed  Google Scholar 

  • Dubin SB. Assessment of fetal lung maturity: in search of the Holy Grail. Clin Chem. 1990;36(11):1867–9.

    PubMed  CAS  Google Scholar 

  • Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform. 2006;7:191.

    Article  Google Scholar 

  • Frith MC, Li MC, Weng Z. Cluster-buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res. 2003;31(13):3666–8.

    Article  PubMed  CAS  Google Scholar 

  • Frith MC, Fu Y, Yu L, Chen JF, Hansen U, Weng Z. Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res. 2004;32(4):1372–81.

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Medico E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 2007;8:3.

    Article  Google Scholar 

  • Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol. 2002;3(11):RESEARCH0059.

    Article  PubMed  Google Scholar 

  • Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta. 1998;1408(2–3):79–89.

    PubMed  CAS  Google Scholar 

  • Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    Article  PubMed  Google Scholar 

  • Gravett MG, Rubens CE, Nunes TM. Global report on preterm birth and stillbirth (2 of 7): discovery science. BMC Pregnancy Childbirth. 2010;10 Suppl 1:S2.

    Article  PubMed  Google Scholar 

  • Grenache DG, Gronowski AM. Fetal lung maturity. Clin Biochem. 2006;39(1):1–10.

    Article  PubMed  Google Scholar 

  • Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics. 2011;12:134.

    Article  PubMed  CAS  Google Scholar 

  • Hong F, Breitling R. A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics. 2008;24(3):374–82.

    Article  PubMed  CAS  Google Scholar 

  • Jeziorska DM, Jordan KW, Vance KW. A systems biology approach to understanding cis-regulatory module function. Semin Cell Dev Biol. 2009;20(7):856–62.

    Article  PubMed  CAS  Google Scholar 

  • Johansson J, Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997;244(3):675–93.

    Article  PubMed  CAS  Google Scholar 

  • Khatri P, Draghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using onto-express. Genomics. 2002;79(2):266–70.

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996;10(1):60–9.

    Article  PubMed  CAS  Google Scholar 

  • Lian X, Yan C, Yang L, Xu Y, Du H. Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L801–7.

    Article  PubMed  CAS  Google Scholar 

  • Liang M, Cowley AW, Greene AS. High throughput gene expression profiling: a molecular approach to integrative physiology. J Physiol. 2004;554(Pt 1):22–30.

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Perl AK, Shannon JM. Erm/thyroid transcription factor 1 interactions modulate surfactant protein C transcription. J Biol Chem. 2006;281(24):16716–26.

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Ikegami M, Xu Y, Bosserhoff AK, Malkinson AM, Shannon JM. Misexpression of MIA disrupts lung morphogenesis and causes neonatal death. Dev Biol. 2008;316(2):441–55.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Glasser SW, Wan H, Whitsett JA. GATA-6 and thyroid transcription factor-1 directly interact and regulate surfactant protein-C gene expression. J Biol Chem. 2002;277(6):4519–25.

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007;87(1):219–44.

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Chen G, Xu Y, Haitchi HM, Du L, Keiser AR, Howarth PH, Davies DE, Holgate ST, Whitsett JA. Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation. Am J Respir Crit Care Med. 2011;184:421–29.

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, Mucenski M, Du L, Keiser AR, Fukazawa T, Naomoto Y, Nagayasu T, Whitsett JA. KRASG12D and Nkx2-1 haploinsufficiency induce invasive mucinous adenocarcinoma of the lung (submitted to J Clin Invest, 2012).

    Google Scholar 

  • Margalit O, Somech R, Amariglio N, Rechavi G. Microarray-based gene expression profiling of hematologic malignancies: basic concepts and clinical applications. Blood Rev. 2005;19(4):223–34.

    Article  PubMed  CAS  Google Scholar 

  • Martis PC, Whitsett JA, Xu Y, Perl AK, Wan H, Ikegami M. C/EBP{alpha} is required for lung maturation at birth. Development. 2006;133(6):1155–64.

    Article  PubMed  CAS  Google Scholar 

  • Mason RJ, Pan T, Edeen KE, Nielsen LD, Zhang F, Longphre M, Eckart MR, Neben S. Keratinocyte growth factor and the transcription factors C/EBP alpha, C/EBP delta, and SREBP-1c regulate fatty acid synthesis in alveolar type II cells. J Clin Invest. 2003;112(2):244–55.

    PubMed  Google Scholar 

  • Matsuzaki Y, Xu Y, Ikegami M, Besnard V, Park KS, Hull WM, Wert SE, Whitsett JA. Stat3 is required for cytoprotection of the respiratory epithelium during adenoviral infection. J Immunol. 2006;177(1):527–37.

    PubMed  CAS  Google Scholar 

  • Mayburd AL, Martlinez A, Sackett D, Liu H, Shih J, Tauler J, Avis I, Mulshine JL. Ingenuity network-assisted transcription profiling: identification of a new pharmacologic mechanism for MK886. Clin Cancer Res. 2006;12(6):1820–7.

    Article  PubMed  CAS  Google Scholar 

  • McGinn T, Wyer PC, Newman TB, Keitz S, Leipzig R, For GG. Tips for learners of evidence-based medicine: 3. Measures of observer variability (kappa statistic). CMAJ. 2004;171(11):1369–73.

    Article  PubMed  Google Scholar 

  • McMurtry IF. Introduction: pre- and postnatal lung development, maturation, and plasticity. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L341–4.

    PubMed  CAS  Google Scholar 

  • Metzger DE, Xu Y, Shannon JM. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn. 2007;236(5):1175–92.

    Article  PubMed  CAS  Google Scholar 

  • Miller LA, Wert SE, Clark JC, Xu Y, Perl AK, Whitsett JA. Role of Sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev Dyn. 2004;231(1):57–71.

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436(7050):518–24.

    Article  PubMed  CAS  Google Scholar 

  • Mucenski ML, Nation JM, Thitoff AR, Besnard V, Xu Y, Wert SE, Harada N, Taketo MM, Stahlman MT, Whitsett JA. Beta-catenin regulates differentiation of respiratory epithelial cells in vivo. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L971–9.

    Article  PubMed  CAS  Google Scholar 

  • Murray SA, Morgan JL, Kane C, Sharma Y, Heffner CS, Lake J, Donahue LR. Mouse gestation length is genetically determined. PLoS One. 2010;5(8):e12418.

    Article  PubMed  Google Scholar 

  • Okaty BW, Sugino K, Nelson SB. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain. PLoS One. 2011;6(1):e16493.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology (Bethesda). 2010;25(3):132–41.

    Article  CAS  Google Scholar 

  • Perl AK, Whitsett JA. Molecular mechanisms controlling lung morphogenesis. Clin Genet. 1999;56(1):14–27.

    Article  PubMed  CAS  Google Scholar 

  • Pihur V, Datta S, Datta S. Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Bioinformatics. 2007;23(13):1607–15.

    Article  PubMed  CAS  Google Scholar 

  • Plantier L, Besnard V, Xu Y, Ikegami M, Wert SE, Hunt AN, Postle AD, Whitsett JA. Activation of sterol response element binding proteins (SREBP) in alveolar type II cells enhances lipogenesis causing pulmonary lipotoxicity. J Biol Chem. 2012;287(13):10099–114.

    Article  PubMed  CAS  Google Scholar 

  • Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999;126(24):5771–83.

    PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    Article  PubMed  CAS  Google Scholar 

  • Wan H, Xu Y, Ikegami M, Stahlman MT, Kaestner KH, Ang SL, Whitsett JA. Foxa2 is required for transition to air breathing at birth. Proc Natl Acad Sci U S A. 2004;101(40):14449–54.

    Article  PubMed  CAS  Google Scholar 

  • Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang SL, Wert S, Stahlman MT, Whitsett JA. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem. 2005;2804(14):13809–16.

    Article  Google Scholar 

  • Wan H, Luo F, Wert SE, Zhang L, Xu Y, Ikegami M, Maeda Y, Bell SM, Whitsett JA. Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development. 2008;135(15):2563–72.

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Hopkins D, Schmidt C, Silva S, Houghton R, Takita H, Repasky E, Reed SG. Identification of genes differentially over-expressed in lung squamous cell carcinoma using combination of cDNA subtraction and microarray analysis. Oncogene. 2000;19(12):1519–28.

    Article  PubMed  CAS  Google Scholar 

  • Weaver TE, Beck DC. Use of knockout mice to study surfactant protein structure and function. Biol Neonate. 1999;76 Suppl 1:15–8.

    Article  PubMed  CAS  Google Scholar 

  • Weaver TE, Whitsett JA. Function and regulation of expression of pulmonary surfactant-associated proteins. Biochem J. 1991;273(Pt 2):249–64.

    PubMed  CAS  Google Scholar 

  • Whitsett JA. Genetic disorders of surfactant homeostasis. Paediatr Respir Rev. 2006;7 Suppl 1:S240–2.

    Article  PubMed  Google Scholar 

  • Whitsett JA, Matsuzaki Y. Transcriptional regulation of perinatal lung maturation. Pediatr Clin North Am. 2006;53(5):873–87, viii.

    Article  PubMed  Google Scholar 

  • Whitsett JA, Weaver TE. Hydrophobic surfactant proteins in lung function and disease. N Engl J Med. 2002;347(26):2141–8.

    Article  PubMed  Google Scholar 

  • Whitsett JA, Nogee LM, Weaver TE, Horowitz AD. Human surfactant protein B: structure, function, regulation, and genetic disease. Physiol Rev. 1995;75(4):749–57.

    PubMed  CAS  Google Scholar 

  • Xu Y, Clark JC, Aronow BJ, Dey CR, Liu C, Wooldridge JL, Whitsett JA. Transcriptional adaptation to cystic fibrosis transmembrane conductance regulator deficiency. J Biol Chem. 2003;278(9):7674–82.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Liu C, Clark JC, Whitsett JA. Functional genomic responses to cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR(delta508) in the lung. J Biol Chem. 2006;281(16):11279–91.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Ikegami M, Wang Y, Matsuzaki Y, Whitsett JA. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells. BMC Genomics. 2007;8(1):455.

    Article  PubMed  Google Scholar 

  • Xu Y, Saegusa C, Schehr A, Grant S, Whitsett JA, Ikegami M. C/EBP {alpha} is required for pulmonary cytoprotection during hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L286–98.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhang M, Wang Y, Kadambi P, Dave V, Lu LJ, Whitsett JA. A systems approach to mapping transcriptional networks controlling surfactant homeostasis. BMC Genomics. 2010;11:451.

    Article  PubMed  Google Scholar 

  • Xu Y, Wang Y, Besnard V, Ikegami M, Wert SE, Heffner C, Murray SA, Donahue LR, Whitsett JA. Transcriptional programs controlling perinatal lung maturation. PLoS One. 2012;7(8):e37046.

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Gonzales L, Kolla V, Rath N, Zhang Y, Lu MM, Kimura S, Ballard PL, Beers MF, Epstein JA, Morrisey EE. Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am J Physiol Lung Cell Mol Physiol. 2006;291(2):L191–9.

    Article  PubMed  CAS  Google Scholar 

  • Yuan B, Li C, Kimura S, Engelhardt RT, Smith BR, Minoo P. Inhibition of distal lung morphogenesis in Nkx2.1(-/-) embryos. Dev Dyn. 2000;217(2):180–90.

    Article  PubMed  CAS  Google Scholar 

  • Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4(4):R28.

    Article  PubMed  Google Scholar 

  • Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, Lollini L, Morris D, Kim Y, DeLustro B, Sheppard D, Pardo A, Selman M, Heller RA. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A. 2002;99(9):6292–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, Y., Whitsett, J.A. (2012). Transcriptional Networks – Control of Lung Maturation. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5149-1_17

Download citation

Publish with us

Policies and ethics