Skip to main content

Support of Perinatal and Neonatal Research

  • Chapter
  • First Online:
  • 1142 Accesses

Part of the book series: Translational Bioinformatics ((TRBIO,volume 2))

Abstract

The emergence of the field of biomedical informatics has enabled the development of computerization within the Neonatal Intensive Care Unit (NICU); however, the unique population encountered in this setting requires special consideration beyond minor adaptations from an adult Intensive Care Unit (ICU) or even a Pediatric Intensive Care Unit (PICU). Deficiencies in data capture of the traditional Electronic Health Record must be addressed to support research of NICU populations. Additional precision is required for the measurement of data elements such as age and weight where day-to-day changes can be clinically relevant. Obtaining gestational age, a key measure in neonatal research, has its own unique array of challenges. Although gestational age has a precise definition, numerous opportunities for error are introduced in documenting the variable, as measures are necessarily based upon estimates. Another challenge to neonatal data collection is the integration of information from parental medical records. The prenatal record and maternal medical history, though pertinent to the neonate, are contained in the mother’s medical chart. Access to prenatal data may be limited by barriers between institutions where care was provided, the transition between types of care providers (obstetrics to neonatology), concerns for the mother’s privacy, and the absence or unreliability of traditional identifiers used in record linking such as name and social security number. The development of neonatal terminologies allows for standardization in the description and communication of concepts specific to neonatology, and thereby facilitates research networks that study rare neonatal conditions across national and international landscapes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addison K, et al. Heart rate characteristics and neurodevelopmental outcome in very low birth weight infants. J Perinatol. 2009;29(11):750–6.

    Article  PubMed  CAS  Google Scholar 

  • Allen MC, Donohue PK, Dusman AE. The limit of viability–neonatal outcome of infants born at 22 to 25 weeks’ gestation. N Engl J Med. 1993;329(22):1597–601.

    Article  PubMed  CAS  Google Scholar 

  • Ananth CV. Menstrual versus clinical estimate of gestational age dating in the United States: temporal trends and variability in indices of perinatal outcomes. Paediatr Perinat Epidemiol. 2007;21 Suppl 2:22–30.

    Article  PubMed  Google Scholar 

  • Baines MA. Excessive infant-mortality; how can it be stayed? A paper contributed to the National Social Science Association, London meeting. To which is added a short paper, reprinted from the Lancet [1861] on Infant-alimentation; or, Artificial feeding, as a substitute for breast-milk, considered in its physical and social aspects. London: Churchill; 1862. 20 p.

    Google Scholar 

  • Baker JP. The incubator controversy: pediatricians and the origins of premature infant technology in the United States, 1890 to 1910. Pediatrics. 1991;87(5):654–62.

    PubMed  CAS  Google Scholar 

  • Ballard JL, et al. New Ballard Score, expanded to include extremely premature infants. J Pediatr. 1991;119(3):417–23.

    Article  PubMed  CAS  Google Scholar 

  • Barfield WD, et al. Using linked data to assess patterns of early intervention (EI) referral among very low birth weight infants. Matern Child Health J. 2008;12(1):24–33.

    Article  PubMed  Google Scholar 

  • Behrman RE, Butler AS, Institute of Medicine (U.S.). Committee on Understanding Premature Birth and Assuring Healthy Outcomes. Preterm birth: causes, consequences, and prevention. Washington, DC: National Academies Press; 2007. xvi, 772 p.

    Google Scholar 

  • Bhutta AT, et al. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(6):728–37.

    Article  PubMed  Google Scholar 

  • Bookman LB, et al. Neonates with tongue-based airway obstruction: a systematic review. Otolaryngol Head Neck Surg. 2012;146(1):8–18.

    Article  PubMed  Google Scholar 

  • Brown P, et al. Variations in faculty assessment of NICU flowsheet data: implications for electronic data display. Int J Med Inform. 2011;80(7):529–32.

    Article  PubMed  Google Scholar 

  • Caley LM. Using geographic information systems to design population-based interventions. Public Health Nurs. 2004;21(6):547–54.

    Article  PubMed  Google Scholar 

  • Clark RH, et al. Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics. 2006;117(6):1979–87.

    Article  PubMed  Google Scholar 

  • Clements KM, et al. Maternal socio-economic and race/ethnic characteristics associated with early intervention participation. Matern Child Health J. 2008;12(6):708–17.

    Article  PubMed  Google Scholar 

  • Costakos DT. Of lobsters, electronic medical records, and neonatal total parenteral nutrition. Pediatrics. 2006;117(2):e328–32.

    Article  PubMed  Google Scholar 

  • DeFranco E, Teramo K, Muglia L. Genetic influences on preterm birth. Semin Reprod Med. 2007;25(1):40–51.

    Article  PubMed  CAS  Google Scholar 

  • DeFranco EA, et al. Area-level poverty and preterm birth risk: a population-based multilevel analysis. BMC Public Health. 2008;8:316.

    Article  PubMed  Google Scholar 

  • Drummond WH. Neonatal informatics–dream of a paperless NICU. Part one: the emergence of neonatal informatics. NeoReviews. 2009;10:e480–7.

    Article  Google Scholar 

  • English PB, et al. Changes in the spatial pattern of low birth weight in a southern California county: the role of individual and neighborhood level factors. Soc Sci Med. 2003;56(10):2073–88.

    Article  PubMed  Google Scholar 

  • Finster M, Wood M. The Apgar score has survived the test of time. Anesthesiology. 2005;102(4):855–7.

    Article  PubMed  Google Scholar 

  • Garite TJ, Clark R, Thorp JA. Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am J Obstet Gynecol. 2004;191(2):481–7.

    Article  PubMed  Google Scholar 

  • Goldenberg RL, et al. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    Article  PubMed  Google Scholar 

  • Gould JB, et al. Incomplete birth certificates: a risk marker for infant mortality. Am J Public Health. 2002;92(1):79–81.

    Article  PubMed  Google Scholar 

  • Gray JE, et al. Using digital crumbs from an electronic health record to identify, study and improve health care teams. AMIA Annu Symp Proc. 2011;2011:491–500.

    PubMed  Google Scholar 

  • HCUP Kids’ Inpatient Database (KID). Healthcare Cost and Utilization Project (HCUP) 2006 and 2009. Rockville: Agency for Healthcare Research and Quality. www.hcup-us.ahrq.gov/kidoverview.jsp

  • Hsia DC, et al. Accuracy of diagnostic coding for Medicare patients under the prospective-payment system. N Engl J Med. 1988;318(6):352–5.

    Article  PubMed  CAS  Google Scholar 

  • Iezzoni LI, et al. Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality? JAMA. 1992;267(16):2197–203.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson BM, et al. Sound and vibration: effects on infants’ heart rate and heart rate variability during neonatal transport. Acta Paediatr. 2012;101(2):148–54.

    Article  PubMed  Google Scholar 

  • Kogan MD. Social causes of low birth weight. J R Soc Med. 1995;88(11):611–15.

    PubMed  CAS  Google Scholar 

  • Kramer MS, et al. The contribution of mild and moderate preterm birth to infant mortality. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. JAMA. 2000;284(7):843–9.

    Article  PubMed  CAS  Google Scholar 

  • Longhurst C, Turner S, Burgos AE. Development of a Web-based decision support tool to increase use of neonatal hyperbilirubinemia guidelines. Jt Comm J Qual Patient Saf. 2009;35(5):256–62.

    PubMed  Google Scholar 

  • Macdorman MF, Mathews TJ. Recent trends in infant mortality in the United States. NCHS Data Brief. 2008;9:1–8.

    PubMed  Google Scholar 

  • Marlow N, et al. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005;352(1):9–19.

    Article  PubMed  CAS  Google Scholar 

  • Martin JA, et al. Births: final data for 2001. Natl Vital Stat Rep. 2002;51(2):1–102.

    PubMed  Google Scholar 

  • Mathews TJ, MacDorman MF. Infant mortality statistics from the 2007 period linked birth/infant death data set. Natl Vital Stat Rep. 2011;59(6):1–30.

    CAS  Google Scholar 

  • McIntire DD, Leveno KJ. Neonatal mortality and morbidity rates in late preterm births compared with births at term. Obstet Gynecol. 2008;111(1):35–41.

    Article  PubMed  Google Scholar 

  • Medlock S, et al. Prediction of mortality in very premature infants: a systematic review of prediction models. PLoS One. 2011;6(9):e23441.

    Article  PubMed  CAS  Google Scholar 

  • Miller AR, Tucker CE. Can health care information technology save babies? J Pol Econ. 2011;119(2):289–324.

    Article  Google Scholar 

  • Oestergaard MZ, et al. Neonatal mortality levels for 193 countries in 2009 with trends since 1990: a systematic analysis of progress, projections, and priorities. PLoS Med. 2011;8(8):e180.

    Article  Google Scholar 

  • Padula M. Neonatal research network terminology harmonization: a formative research initiative of the National Children’s Study. National Children’s Study Metadata Repository Workshop; 2012.

    Google Scholar 

  • Palma JP, et al. Neonatal informatics: computerized physician order entry. NeoReviews. 2011a;12:393–6.

    Article  PubMed  Google Scholar 

  • Palma JP, Sharek PJ, Longhurst CA. Impact of electronic medical record integration of a handoff tool on sign-out in a newborn intensive care unit. J Perinatol. 2011b;31(5):311–17.

    Article  PubMed  CAS  Google Scholar 

  • Pearson HA, et al. Committee report: American Pediatrics: milestones at the millennium. Pediatrics. 2001;107(6):1482–91.

    Article  PubMed  CAS  Google Scholar 

  • Richards TB, et al. Geographic information systems and public health: mapping the future. Public Health Rep. 1999;114(4):359–73.

    Article  PubMed  CAS  Google Scholar 

  • Rushton G, Lolonis P. Exploratory spatial analysis of birth defect rates in an urban population. Stat Med. 1996;15(7–9):717–26.

    Article  PubMed  CAS  Google Scholar 

  • Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–9.

    Article  PubMed  Google Scholar 

  • Schoendorf KC, Branum AM. The use of United States vital statistics in perinatal and obstetric research. Am J Obstet Gynecol. 2006;194(4):911–15.

    Article  PubMed  Google Scholar 

  • Shapiro-Mendoza CK, et al. Risk factors for neonatal morbidity and mortality among “healthy,” late preterm newborns. Semin Perinatol. 2006;30(2):54–60.

    Article  PubMed  Google Scholar 

  • Shortliffe EH. Biomedical informatics in the education of physicians. JAMA. 2010;304(11):1227–8.

    Article  PubMed  CAS  Google Scholar 

  • Simmons LE, et al. Preventing preterm birth and neonatal mortality: exploring the epidemiology, causes, and interventions. Semin Perinatol. 2010;34(6):408–15.

    Article  PubMed  Google Scholar 

  • South AP, et al. Spatial analysis of preterm birth demonstrates opportunities for targeted intervention. Matern Child Health J. 2012;16(2):470–8.

    Article  PubMed  Google Scholar 

  • Spitzmiller RE, et al. Amplitude-integrated EEG is useful in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischemic encephalopathy: a meta-analysis. J Child Neurol. 2007;22(9):1069–78.

    Article  PubMed  Google Scholar 

  • Thornton SN, et al. Neonatal bilirubin management as an implementation example of interdisciplinary continuum of care tools. AMIA Annu Symp Proc. 2007;2007:726–30.

    Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division. World population prospects: the 2010 revision, CD-ROM edition; 2011.

    Google Scholar 

  • Vinikoor LC, et al. Reliability of variables on the North Carolina birth certificate: a comparison with directly queried values from a cohort study. Paediatr Perinat Epidemiol. 2010;24(1):102–12.

    Article  PubMed  Google Scholar 

  • Wang ML, et al. Clinical outcomes of near-term infants. Pediatrics. 2004;114(2):372–6.

    Article  PubMed  Google Scholar 

  • Ward RM, Beachy JC. Neonatal complications following preterm birth. BJOG. 2003;110 Suppl 20:8–16.

    PubMed  Google Scholar 

  • Wier ML, Pearl M, Kharrazi M. Gestational age estimation on United States livebirth certificates: a historical overview. Paediatr Perinat Epidemiol. 2007;21 Suppl 2:4–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Hall Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hall, E.S. (2012). Support of Perinatal and Neonatal Research. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5149-1_12

Download citation

Publish with us

Policies and ethics