Skip to main content

Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods—A Comparative Study

  • Chapter
Computational Methods in Stochastic Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 26))

Abstract

Finite element and finite difference methods have been widely used, among other methods, to numerically solve the Fokker–Planck equation for investigating the time history of the probability density function of linear and nonlinear 2d and 3d problems; also the application to 4d problems has been addressed. However, due to the enormous increase in computational costs, different strategies are required for efficient application to problems of dimension ≥3. Recently, a stabilized multi-scale finite element method has been effectively applied to the Fokker–Planck equation. Also, the alternating directions implicit method shows good performance in terms of efficiency and accuracy. In this paper various finite difference and finite element methods are discussed, and the results are compared using various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergman, L.A., Heinrich, J.C.: On the reliability of the linear oscillator and systems of coupled oscillators. Int. J. Numer. Methods Eng. 18(9), 1271–1295 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caughey, T.K.: Derivation and application of the Fokker–Planck equation to discrete nonlinear dynamic systems subjected to white random excitation. J. Acoust. Soc. Am. 35(11), 1683–1692 (1963)

    Article  MathSciNet  Google Scholar 

  3. Caughey, T.K.: Nonlinear Theory of Random Vibrations. Elsevier, Amsterdam (1971)

    Google Scholar 

  4. COMSOL 5.5: Theory manual. COMSOL (2011)

    Google Scholar 

  5. Franca, L.P., Hauke, G., Masud, A.: Revisiting stabilized finite element methods for the advective-diffusive equation. Comput. Methods Appl. Mech. Eng. 195(13–16), 1560–1572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kumar, M., Chakravorty, S., Junkins, J.L.: A homotopic approach to domain determination and solution refinement for the stationary Fokker–Planck equation. Probab. Eng. Mech. 24(3), 265–277 (2009)

    Article  Google Scholar 

  7. Kumar, M., Chakravorty, S., Junkins, J.L.: A semianalytic meshless approach to the transient Fokker–Planck equation. Probab. Eng. Mech. 25(3), 323–331 (2010)

    Article  Google Scholar 

  8. Kumar, M., Chakravorty, S., Singla, P., Junkins, J.L.: The partition of unity finite element approach with hp-refinement for the stationary Fokker–Planck equation. J. Sound Vib. 327(1–2), 144–162 (2009)

    Article  Google Scholar 

  9. Kumar, P., Narayana, S.: Solution of Fokker–Planck equation by finite element and finite difference methods for nonlinear systems. Sâdhana 31(4), 445–461 (2006)

    Article  MATH  Google Scholar 

  10. Langley, R.S.: A finite element method for the statistics of non-linear random vibration. J. Sound Vib. 101(1), 41–54 (1985)

    Article  MATH  Google Scholar 

  11. Lin, Y.K.: Probabilistic Theory of Structural Dynamics. Krieger, Melbourne (1976)

    MATH  Google Scholar 

  12. Masud, A., Bergman, L.A.: Solution of the four dimensional Fokker–Planck equation: still a challenge. In: Augusti, G., Schuëller, G.I., Ciampoli, M. (eds.) ICOSSAR 2005. Millpress, Rotterdam (2005)

    Google Scholar 

  13. Masud, A., Bergman, L.A.: Application of multi-scale finite element methods to the solution of the Fokker–Planck equation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1513–1526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Masud, A., Khurram, R.A.: A multiscale/stabilized finite element method for the advection-diffusion equation. Comput. Methods Appl. Mech. Eng. 193(21–22), 1997–2018 (2004)

    Article  MATH  Google Scholar 

  15. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Spencer, B.F., Bergman, L.A.: On the numerical solutions of the Fokker–Planck equations for nonlinear stochastic systems. Nonlinear Dyn. 4, 357–372 (1993)

    Article  Google Scholar 

  17. von Wagner, U., Wedig, W.V.: On the calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions. Nonlinear Dyn. 21(3), 289–306 (2000)

    Article  MATH  Google Scholar 

  18. Wedig, W.V., von Wagner, U.: Extended Laguerre polynomials for nonlinear stochastic systems. In: Computational Stochastic Mechanics. Balkema, Rotterdam (1999)

    Google Scholar 

  19. Wijker, J.: Random Vibrations in Spacecraft Structures Design: Theory and Applications. Solid Mechanics and Its Applications, vol. 165. Springer, Berlin (2009)

    Book  Google Scholar 

  20. Wojtkiewicz, S.F., Bergman, L.A., Spencer, B.F.: High fidelity numerical solutions of the Fokker–Planck equation. In: Seventh International Conference on Structural Safety and Reliability (ICOSSAR’97) (1998)

    Google Scholar 

  21. Wojtkiewicz, S.F., Bergman, L.A., Spencer, B.F., Johnson, E.A.: Numerical solution of the four-dimensional nonstationary Fokker–Planck equation. In: Narayanan, S., Iyengar, R.N. (eds.) IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics (1999)

    Google Scholar 

  22. Xie, W.-X., Cai, L., Xu, W.: Numerical simulation for a Duffing oscillator driven by colored noise using nonstandard difference scheme. Physica A 373, 183–190 (2007)

    Article  Google Scholar 

  23. Zorzano, M., Mais, H., Vázquez, L.: Numerical solution of two dimensional Fokker–Planck equations. Appl. Math. Comput. 98, 109–117 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Austrian Research Council FWF under Project No. J2989-N22 (LP, Schrödinger scholarship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Bergman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pichler, L., Masud, A., Bergman, L.A. (2013). Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods—A Comparative Study. In: Papadrakakis, M., Stefanou, G., Papadopoulos, V. (eds) Computational Methods in Stochastic Dynamics. Computational Methods in Applied Sciences, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5134-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5134-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5133-0

  • Online ISBN: 978-94-007-5134-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics