Skip to main content

A Novel Reduced Spectral Function Approach for Finite Element Analysis of Stochastic Dynamical Systems

  • Chapter
Computational Methods in Stochastic Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 26))

Abstract

This work provides the theoretical development and simulation results of a novel Galerkin subspace projection scheme for damped dynamic systems with stochastic coefficients and homogeneous Dirichlet boundary conditions. The fundamental idea involved here is to solve the stochastic dynamic system in the frequency domain by projecting the solution into a reduced finite dimensional spatio-random vector basis spanning the stochastic Krylov subspace to approximate the response. Subsequently, Galerkin weighting coefficients have been employed to minimize the error induced due to the use of the reduced basis and a finite order of the spectral functions and hence to explicitly evaluate the stochastic system response. The statistical moments of the solution have been evaluated at all frequencies to illustrate and compare the stochastic system response with the deterministic case. The results have been validated with direct Monte-Carlo simulation for different correlation lengths and variability of randomness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikari, S., Manohar, C.S.: Dynamic analysis of framed structures with statistical uncertainties. Int. J. Numer. Methods Eng. 44(8), 1157–1178 (1999)

    Article  MATH  Google Scholar 

  2. Babuska, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1251–1294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25(2), 183–197 (2010)

    Article  Google Scholar 

  5. Charmpis, D.C., Schuëller, G.I., Pellissetti, M.F.: The need for linking micromechanics of materials with stochastic finite elements: a challenge for materials science. Comput. Mater. Sci. 41(1), 27–37 (2007)

    Article  Google Scholar 

  6. Falsone, G., Impollonia, N.: A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters. Comput. Methods Appl. Mech. Eng. 191(44), 5067–5085 (2002)

    Article  MATH  Google Scholar 

  7. Feng, Y.T.: Adaptive preconditioning of linear stochastic algebraic systems of equations. Commun. Numer. Methods Eng. 23(11), 1023–1034 (2007)

    Article  MATH  Google Scholar 

  8. Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225(1), 652–685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghanem, R.: The nonlinear Gaussian spectrum of log-normal stochastic processes and variables. J. Appl. Mech. 66, 964–973 (1989)

    Article  Google Scholar 

  10. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  11. Grigoriu, M.: Galerkin solution for linear stochastic algebraic equations. J. Eng. Mech. 132(12), 1277–1289 (2006)

    Article  Google Scholar 

  12. Kerfriden, P., Gosselet, P., Adhikari, S., Bordas, S.: Bridging the proper orthogonal decomposition methods and augmented Newton–Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. Comput. Methods Appl. Mech. Eng. 200(5–8), 850–866 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khalil, M., Adhikari, S., Sarkar, A.: Linear system identification using proper orthogonal decomposition. Mech. Syst. Signal Process. 21(8), 3123–3145 (2007)

    Article  Google Scholar 

  14. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method. Wiley, Chichester (1992)

    MATH  Google Scholar 

  15. Lenaerts, V., Kerschen, G., Golinval, J.C.: Physical interpretation of the proper orthogonal modes using the singular value decomposition. J. Sound Vib. 249(5), 849–865 (2002)

    Article  Google Scholar 

  16. Li, C.C., Kiureghian, A.D.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993)

    Article  Google Scholar 

  17. Li, C.F., Feng, Y.T., Owen, D.R.J.: Explicit solution to the stochastic system of linear algebraic equations (α 1 A 1+α 2 A 2+⋯+α m A m )x=b. Comput. Methods Appl. Mech. Eng. 195(44–47), 6560–6576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, W.K., Belytschko, T., Mani, A.: Random field finite-elements. Int. J. Numer. Methods Eng. 23(10), 1831–1845 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matthies, H.G., Brenner, C.E., Bucher, C.G., Soares, C.G.: Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements. Struct. Saf. 19(3), 283–336 (1997)

    Article  Google Scholar 

  22. Nair, P.B., Keane, A.J.: Stochastic reduced basis methods. AIAA J. 40(8), 1653–1664 (2002)

    Article  Google Scholar 

  23. Nouy, A.: A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 196(45–48), 4521–4537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nouy, A.: Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms. Comput. Methods Appl. Mech. Eng. 197(51–52), 4718–4736 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nouy, A.: Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch. Comput. Methods Eng. 16, 251–285 (2009). doi:10.1007/s11831-009-9034-5

    Article  MathSciNet  Google Scholar 

  26. Papadrakakis, M., Papadopoulos, V.: Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation. Comput. Methods Appl. Mech. Eng. 134(3–4), 325–340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes, 4th edn. McGraw-Hill, Boston (2002)

    Google Scholar 

  28. Petyt, M.: Introduction to Finite Element Vibration Analysis. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  29. Sachdeva, S.K., Nair, P.B., Keane, A.J.: Comparative study of projection schemes for stochastic finite element analysis. Comput. Methods Appl. Mech. Eng. 195(19–22), 2371–2392 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sachdeva, S.K., Nair, P.B., Keane, A.J.: Hybridization of stochastic reduced basis methods with polynomial chaos expansions. Probab. Eng. Mech. 21(2), 182–192 (2006)

    Article  Google Scholar 

  31. Sarkar, A., Benabbou, N., Ghanem, R.: Domain decomposition of stochastic PDEs: theoretical formulations. Int. J. Numer. Methods Eng. 77(5), 689–701 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stefanou, G.: The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng. 198(9–12), 1031–1051 (2009)

    Article  MATH  Google Scholar 

  33. Wan, X.L., Karniadakis, G.E.: Beyond Wiener–Askey expansions: handling arbitrary pdfs. J. Sci. Comput. 27(1–3), 455–464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiu, D.B., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiu, D.B., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yamazaki, F., Shinozuka, M., Dasgupta, G.: Neumann expansion for stochastic finite element analysis. J. Eng. Mech. 114(8), 1335–1354 (1988)

    Article  Google Scholar 

  37. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn. McGraw-Hill, London (1991)

    Google Scholar 

Download references

Acknowledgements

AK acknowledges the financial support from the Swansea University through the award for Zienkiewicz scholarship. SA acknowledges the financial support from The Royal Society of London through the Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kundu, A., Adhikari, S. (2013). A Novel Reduced Spectral Function Approach for Finite Element Analysis of Stochastic Dynamical Systems. In: Papadrakakis, M., Stefanou, G., Papadopoulos, V. (eds) Computational Methods in Stochastic Dynamics. Computational Methods in Applied Sciences, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5134-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5134-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5133-0

  • Online ISBN: 978-94-007-5134-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics