Skip to main content

Structural Seismic Fragility Analysis of RC Frame with a New Family of Rayleigh Damping Models

  • Chapter
Computational Methods in Stochastic Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 26))

  • 2648 Accesses

Abstract

Structural seismic vulnerability assessment is one of the key steps in a seismic risk management process. Structural vulnerability can be assessed using the concept of fragility. Structural fragility is the probability for a structure to sustain a given damage level for a given input ground motion intensity, which is represented by so-called fragility curves or surfaces. In this work, we consider a moment-resisting reinforced concrete frame structure in the area of the Cascadia subduction zone, that is in the South-West of Canada and the North-West of the USA. According to shaking table tests, we first validate the capability of an inelastic fiber beam/column element, using a recently developed concrete constitutive law, for representing the seismic behavior of the tested frame coupled to either a commonly used Rayleigh damping model or a proposed new model. Then, for each of these two damping models, we proceed to a structural fragility analysis and investigate the amount of uncertainty to be induced by damping models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Henri Poincaré (1854–1912) is a French mathematician, physician and philosopher. This year is the hundredth anniversary of his death.

References

  1. Howard, H.H.M., Huo, J.-R.: Generation of hazard-consistent fragility curves. Soil Dyn. Earthq. Eng. 13(5), 345–354 (1994)

    Article  Google Scholar 

  2. Jalayer, F., Beck, J.L.: Effects of two alternative representations of ground-motion uncertainty on probabilistic seismic demand assessment of structures. Earthquake Eng. Struct. Dyn. 37, 61–79 (2008)

    Article  Google Scholar 

  3. Rosic, B.V., Matthies, H.G., Zikovic, M., Ibrahimbegovic, A.: Formulation and computational application of inelastic media with uncertain parameters. In: Oñate, E., Owen, D.R.J. (eds.) Proceedings of the 10th International Conference on Computational Plasticity (COMPLAS X), CIMNE, Barcelona (2009)

    Google Scholar 

  4. Kafali, C., Grigoriu, M.: Seismic fragility analysis: application to simple linear and nonlinear systems. Earthquake Eng. Struct. Dyn. 36, 1885–1900 (2007)

    Article  Google Scholar 

  5. Seyedi, D.M., Gehl, P., Douglas, J., Davenne, L., Mezher, N., Ghavamian, S.: Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthquake Eng. Struct. Dyn. 39, 91–108 (2010)

    Google Scholar 

  6. Sáez, E., Lopez-Caballero, F., Modaressi-Farahmand-Razavi, A.: Effect of the inelastic dynamic soil-structure interaction on the seismic vulnerability assessment. Struct. Saf. 33(1), 51–63 (2011)

    Article  Google Scholar 

  7. Saxena, V., Deodatis, G., Shinozuka, M., Feng, M.Q.: Development of fragility curves for multi-span reinforced concrete bridges. In: Proceedings of International Conference on Monte Carlo Simulation, Monte-Carlo, Monaco (2000)

    Google Scholar 

  8. Popescu, R., Prevost, J.H., Deodatis, G.: 3d effects in seismic liquefaction of stochastically variable soil deposits. Géotechnique 55(1), 21–31 (2005)

    Article  Google Scholar 

  9. Lagaros, N.D.: Probabilistic fragility analysis: a tool for assessing design rules of rc buildings. Earthq. Eng. Eng. Vib. 7(1), 45–56 (2008)

    Article  Google Scholar 

  10. Ellingwood, B.R.: Earthquake risk assessment of building structures. Reliab. Eng. Syst. Saf. 74, 251–262 (2001)

    Article  Google Scholar 

  11. Léger, P., Dussault, S.: Seismic-energy dissipation in MDOF structures. J. Struct. Eng. 118(6), 1251–1267 (1992)

    Article  Google Scholar 

  12. Hall, J.F.: Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake Eng. Struct. Dyn. 35, 525–545 (2006)

    Article  Google Scholar 

  13. Charney, F.A.: Unintended consequences of modeling damping in structures. J. Struct. Eng. 134(4), 581–592 (2008)

    Article  Google Scholar 

  14. Associate Committee on the National Building Code: National building code of Canada. Technical report, National Research Council of Canada, Ottawa, Ontario, Canada (1995)

    Google Scholar 

  15. Design of concrete structures for buildings. Standard CAN-A23.3-94, Canadian Standards Association, Rexdale, Ontario, Canada (1994)

    Google Scholar 

  16. Filiatrault, A., Lachapelle, É., Lamontagne, P.: Seismic performance of ductile and nominally ductile reinforced concrete moment resisting frames. I. Experimental study. Can. J. Civ. Eng. 25, 331–341 (1998)

    Article  Google Scholar 

  17. Jehel, P., Davenne, L., Ibrahimbegovic, A., Léger, P.: Towards robust viscoelastic-plastic-damage material model with different hardenings/softenings capable of representing salient phenomena in seismic loading applications. Comput. Concr. 7(4), 365–386 (2010)

    Google Scholar 

  18. Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)

    Article  MATH  Google Scholar 

  19. Maugin, G.A.: The Thermodynamics of Nonlinear Irreversible Behaviors—An Introduction. World Scientific, Singapore (1999)

    Google Scholar 

  20. Garikipati, K., Hughes, T.J.R.: A study of strain localization in a multiple scale framework—the one-dimensional problem. Comput. Methods Appl. Mech. Eng. 159, 193–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ibrahimbegovic, A., Brancherie, D.: Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure. Comput. Mech. 31, 89–100 (2003)

    Article  Google Scholar 

  22. Oliver, J., Huespe, A.E.: Theoretical and computational issues in modelling material failure in strong discontinuity scenarios. Comput. Methods Appl. Mech. Eng. 193, 2987–3014 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Taylor, R.L.: FEAP: A Finite Element Analysis Program, User Manual and Programmer Manual, Version 7.4. University of California Press, Berkeley (2005)

    Google Scholar 

  24. Applied Technology Council: Quantification of building seismic performance factors. Technical Report FEMA P695, Federal Emergency Management Agency, Washington, DC (June 2009)

    Google Scholar 

  25. Applied Technology Council: Modeling and acceptance criteria for seismic design and analysis of tall buildings. Technical Report PEER 2010/111 or PEER/ATC-72-1, Pacific Earthquake Engineering Research Center, Richmond, CA (October 2010)

    Google Scholar 

  26. Krawinkler, H.: Importance of good nonlinear analysis. Struct. Des. Tall Spec. Build. 15, 515–531 (2006)

    Article  Google Scholar 

  27. Ragueneau, F., La Borderie, C., Mazars, J.: Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications. Mech. Cohes.-Frict. Mater. 5, 607–625 (2000)

    Article  Google Scholar 

  28. Tinawi, R., Léger, P., Leclerc, M., Cipolla, G.: Seismic safety of gravity dams: from shake table experiments to numerical analyses. J. Struct. Eng. 126(4), 518–529 (2000)

    Article  Google Scholar 

  29. Luu, H., Ghorbanirenani, I., Léger, P., Tremblay, R.: Structural dynamics of slender ductile reinforced concrete shear walls. In: EURODYN 2011 (2011)

    Google Scholar 

  30. Filiatrault, A., Lachapelle, É., Lamontagne, P.: Seismic performance of ductile and nominally ductile reinforced concrete moment resisting frames. II. Analytical study. Can. J. Civ. Eng. 25, 342–351 (1998)

    Article  Google Scholar 

  31. CSI: Perform3D User’s manual. Technical report, California (2007)

    Google Scholar 

  32. Arias, A.: A measure of earthquake intensity. In: Seismic Design for Nuclear Power Plants, pp. 438–483. MIT Press, Cambridge (1970)

    Google Scholar 

  33. Bommer, J.J., Acevedo, A.B.: The use of real earthquake accelerograms as input to dynamic analysis. J. Earthq. Eng. 8(S1), 43–91 (2004)

    Google Scholar 

  34. Users manual for the PEER ground motion database web application. Technical report, Pacific Earthquake Engineering Research Center (November 2011)

    Google Scholar 

  35. Baker, G.E., Langston, C.: Source parameters of the 1949 magnitude 7.1 South Puget Sound, Washington, earthquake as determined from long-period body waves and strong ground motion. Bull. Seismol. Soc. Am. 77, 1530–1557 (1987)

    Google Scholar 

  36. Silva, W.J., Wong, I.G., Darragh, R.B.: Engineering characterization of earthquake strong motions in the Pacific Northwest. In: Assessing Earthquake Hazards and Reducing Risk in the Pacific Northwest, vol. 2. U.S. Geological Survey Professional Paper 1560, pp. 313–324. United States Government Printing Office, Washington (1998)

    Google Scholar 

  37. Saragoni, G.R., Concha, P.: Damaging capacity of Cascadia subduction earthquakes compared with Chilean subduction. In: 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, August 1–6 (2004)

    Google Scholar 

  38. Wiest, K.R., Doser, D.I., Velasco, A.A., Zollweg, J.: Source investigation and comparison of the 1939, 1946, 1949 and 1965 earthquakes, Cascadia subduction zone, western Washington. Pure Appl. Geophys. 164, 1905–1919 (2007)

    Article  Google Scholar 

  39. Shinozuka, M., Feng, M.Q., Jongheon, L., Naganuma, T.: Statistical analysis of fragility curves. J. Eng. Mech. 126(12), 1224–1231 (2000)

    Article  Google Scholar 

  40. Poincaré, H.: Calcul des Probabilités. Cours de la Faculté des Sciences de Paris—Cours de Physique mathématique, 2nd edn. Gauthier-Villars, Paris (1912) (in French)

    Google Scholar 

  41. Léger, P., Kervégant, G., Tremblay, R.: Incremental dynamic analysis of nonlinear structures: selection of input ground motions. In: Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering, Toronto, Ontario, Canada, July 25–29 (2010)

    Google Scholar 

  42. Bommer, J., Magenes, G., Hancock, J., Penazzo, P.: The influence of strong-motion duration on the seismic response of masonry structures. Bull. Earthq. Eng. 2, 1–26 (2004). doi:10.1023/B:BEEE.0000038948.95616.bf

    Article  Google Scholar 

  43. Park, Y.J., Ang, A.H.S., Wen, Y.K.: Seismic damage analysis of reinforced concrete buildings. J. Struct. Eng. 111(4), 740–757 (1985)

    Article  Google Scholar 

  44. Castiglioni, C.A., Pucinotti, R.: Failure criteria and cumulative damage models for steel components under cyclic loading. J. Constr. Steel Res. 65, 751–765 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Pr. André Filiatrault for providing the data from the shaking table tests used in this work. The first author benefited from partial funding from Électricité de France (EDF) within the research project “MARS” (“Modèles Avancés pour le Risque Sismique”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Jehel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jehel, P., Léger, P., Ibrahimbegovic, A. (2013). Structural Seismic Fragility Analysis of RC Frame with a New Family of Rayleigh Damping Models. In: Papadrakakis, M., Stefanou, G., Papadopoulos, V. (eds) Computational Methods in Stochastic Dynamics. Computational Methods in Applied Sciences, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5134-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5134-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5133-0

  • Online ISBN: 978-94-007-5134-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics