Skip to main content

The CHO miRNA Transcriptome

  • Chapter
  • First Online:

Abstract

After the initial identification of microRNAs (miRNAs) almost 20 years ago (Lee et al, RNA 14(1): 35–42, 1993; Wightman et al, Cell 75(5): 855–862, 1993), research on the functional relevance of this class of small non-coding RNAs has increased exponentially, especially during the last 15 years. Today the importance of miRNAs as an additional layer in the regulation of gene expression is well appreciated and has established miRNAs as important research targets in virtually every area of cell biology from organism development (Alvarez-Garcia and Miska, Development 132(21): 4653–4662, 2005) to disease (Hammond, Curr Opin Genet Dev 16(1): 4–9, 2006) and cell death (Vecchione and Croce, Endocr-Rel Cancer 17(1): F37–50, 2010).

While several hundred miRNAs have been reported for human, murine and other mammalian species (Griffiths-Jones, Current Protocols in Bioinformatics 12.9.1–10, 2010), little attention has been attributed to miRNAs in the Chinese hamster, or the most widely used Chinese hamster derived cell line—Chinese hamster ovary (CHO) cells until recently. This is surprising, given the fact that miRNAs are known to orchestrate complex gene expression networks, thereby acting amidst important cellular networks that for example drive cell growth and survival and are consequently also of profound interest for the CHO research community, which is trying to adapt the cellular phenotype to the needs of modern bioprocesses.

Therefore, the aim of this chapter is to (i) provide a general overview on miRNA expression in mammalian cells; introduce the reader to potential applications of miRNAs in bioprocessing, (ii) to summarize the current knowledge about the miRNA transcriptome in CHO cells and (iii) to provide a perspective to the reader where this knowledge needs to be expanded so that future applications of miRNAs as bioprocessing tools will become feasible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132(21):4653–4662

    Article  PubMed  CAS  Google Scholar 

  • Arden N, Betenbaugh MJ (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 22(4):174–180

    Article  PubMed  CAS  Google Scholar 

  • Barron N, Kumar N et al (2011) Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7. J Biotechnol 151(2):204–211

    Article  PubMed  CAS  Google Scholar 

  • Barron Niall, Sanchez N et al (2011) MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 33(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Becker J et al (2011) Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing. J Biotechnol, accepted for publication

    Google Scholar 

  • Berezikov E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  PubMed  CAS  Google Scholar 

  • Bort JAH et al (2011) Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures. Biotechnol J. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21751394. Accessed August 15, 2011

  • Brenner JL et al (2010) Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr Biol: CB, 20(14):1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Chi SW et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    PubMed  CAS  Google Scholar 

  • Clarke C et al (2011) Predicting cell-specific productivity from CHO gene expression. J Biotechnol 151(2):159–165

    Article  PubMed  CAS  Google Scholar 

  • Cloonan N et al (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9(8):R127

    Article  PubMed  Google Scholar 

  • Davis BN et al (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39(3):373–384

    Article  PubMed  CAS  Google Scholar 

  • Druz A et al (2011) A novel microRNA mmu-miR-466h affects apoptosis regulation in mammalian cells. Biotechnol Bioeng 108(7):1651–1661

    Article  PubMed  CAS  Google Scholar 

  • Ernst W et al (2006) Evaluation of a genomics platform for cross-species transcriptome analysis of recombinant CHO cells. Biotechnol J 1(6):639–650

    Article  PubMed  CAS  Google Scholar 

  • Frank D et al (2011) MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3. J Mol Cell Cardiol. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22182733. Accessed February 21, 2012

  • Gammell P et al (2007) Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. J Biotechnol 130(3):213–218

    Article  PubMed  CAS  Google Scholar 

  • Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  PubMed  CAS  Google Scholar 

  • Gilad S et al (2008) Serum MicroRNAs Are Promising Novel Biomarkers. PLoS ONE 3(9):e3148

    Google Scholar 

  • Griffiths-Jones S (2010) miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics 12.9.1–10 (Editoral Board, Andreas D. Baxevanis… et al, Chapter 12)

    Google Scholar 

  • Grillari J, Hackl M , Grillari-Voglauer R (2010) miR-17–92 cluster: ups and downs in cancer and aging. Biogerontology 11(4):501–506

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Zhao RCH, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39(6):608–616

    Article  PubMed  CAS  Google Scholar 

  • Hackl M et al (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153(1–2):62–75

    Article  PubMed  CAS  Google Scholar 

  • Hackl M et al (2012) Computational identification of microRNA gene loci and precursor microRNA sequences in CHO cell lines. J Biotechnol Available at: http://www.ncbi.nlm.nih.gov/pubmed/22306111. Accessed February 20, 2012

  • Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16(1):4–9

    Article  PubMed  CAS  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27(34):5848–5856

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey SS (2008) Cancer biomarker profiling with microRNAs. Nat Biotech 26(4):400–401

    Article  CAS  Google Scholar 

  • Jiang L et al (2010) MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432(1):199–205

    Article  PubMed  CAS  Google Scholar 

  • Johnson KC et al (2011) Conserved microRNAs in Chinese hamster ovary cell lines. Biotechnol Bioeng 108(2):475–480

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS (2010) MicroRNAs and cellular phenotypy. Cell 143(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    PubMed  CAS  Google Scholar 

  • Krützfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 4(1):9–12

    Article  PubMed  Google Scholar 

  • Lee EJ et al (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227

    Article  PubMed  CAS  Google Scholar 

  • Li Z et al (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30(5):823–834

    Article  PubMed  Google Scholar 

  • Lin N et al (2010) Profiling highly conserved microrna expression in recombinant IgG-producing and parental chinese hamster ovary cells. Biotechnol Prog. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21692195. Accessed August 15, 2011

  • Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312

    Article  PubMed  CAS  Google Scholar 

  • Lu J (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  • Majors BS et al (2008) Enhancement of transient gene expression and culture viability using Chinese hamster ovary cells overexpressing Bcl-x(L). Biotechnol Bioeng 101(3):567–578

    Article  PubMed  CAS  Google Scholar 

  • Majors BS et al (2009) Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol Prog 25(4):1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Manni I et al (2009) The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J 23(11):3957–3966

    Article  PubMed  CAS  Google Scholar 

  • Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467(7311):86–90

    Article  PubMed  CAS  Google Scholar 

  • Müller D, Katinger H, Grillari J (2008) MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol 26(7):359–365

    Article  PubMed  Google Scholar 

  • Nonne N et al (2010) Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res 38(4):e20

    Google Scholar 

  • Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13(12):1108–1114

    Article  PubMed  CAS  Google Scholar 

  • Olive V et al (2009) miR-19 is a key oncogenic component of mir-17–92. Genes Dev 23(24):2839–2849

    Article  PubMed  CAS  Google Scholar 

  • Pickering MT, Stadler BM, Kowalik TF (2009) miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28(1):140–145

    Article  PubMed  CAS  Google Scholar 

  • Reddy SDN et al (2008) MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68(20):8195–8200

    Article  PubMed  CAS  Google Scholar 

  • Roobol A et al (2009) Biochemical insights into the mechanisms central to the response of mammalian cells to cold stress and subsequent rewarming. FEBS J 276(1):286–302

    Article  PubMed  CAS  Google Scholar 

  • Suzuki HI et al (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533

    Article  PubMed  CAS  Google Scholar 

  • Trummer E et al (2006a) Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94(6):1033–1044

    Article  CAS  Google Scholar 

  • Trummer E et al (2006b) Process parameter shifting: Part II. Biphasic cultivation-A tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnol Bioeng 94(6):1045–1052

    Article  CAS  Google Scholar 

  • Vecchione A, Croce CM (2010) Apoptomirs: small molecules have gained the license to kill. Endocr-Relat Cancer 17(1):F37–50

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  PubMed  CAS  Google Scholar 

  • Wu C-I, Shen Y, Tang T (2009) Evolution under canalization and the dual roles of microRNAs—A hypothesis. Genome Res 19(5):734–743

    Article  PubMed  CAS  Google Scholar 

  • Xu X et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

    Article  PubMed  CAS  Google Scholar 

  • Yee JC, de Leon Gatti M et al (2008) Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnol Bioeng 99(5):1186–1204

    Article  PubMed  CAS  Google Scholar 

  • Yee JC, Wlaschin KF et al (2008) Quality assessment of cross-species hybridization of CHO transcriptome on a mouse DNA oligo microarray. Biotechnol Bioeng 101(6):1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Yee JC, Gerdtzen ZP, Hu W-S (2009) Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol Bioeng 102(1):246–263

    Article  PubMed  CAS  Google Scholar 

  • Yu X et al (2012) Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. BMC Cancer 12:29

    Google Scholar 

  • Zhu H et al (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147(1):81–94

    Article  PubMed  CAS  Google Scholar 

  • Zhu S et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

MH would like to acknowledge support by the BOKU Doc doctoral scholarship program; NB and JG the support of the FWF Doctoral program “BioToP”; JG support by the GEN-AU project “Non-coding RNAs” (grant number 820982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Grillari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hackl, M., Borth, N., Grillari, J. (2012). The CHO miRNA Transcriptome. In: Barron, N. (eds) MicroRNAs as Tools in Biopharmaceutical Production. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5128-6_4

Download citation

Publish with us

Policies and ethics