Skip to main content

Nanotechnology for Algal Biofuels

  • Chapter
  • First Online:
The Science of Algal Fuels

Abstract

Because of their high productivity, algae are considered the biomass with a realistic potential to replace fossil fuels. This would require cost-effective and sustainable scale-up of growth and downstream processing of algal biofuels. Currently, there are several hurdles for commercialization, which call for innovative solutions. Nanotechnology has the potential to provide solutions to several of the challenges faced in algae growth and harvesting, lipid extraction, and processing of the biofuels. This chapter covers major nanotechnology techniques either already being applied in algal biofuel research or other biofuel-related fields that can be extrapolated to algal biofuel production. Application of silver nanoparticles for improved photoconversion, calcium oxide nanocrystals in transesterification, and mesoporous nanoparticles in biofuel separation are discussed along with some other promising nanomaterial-based components such as LEDs for improving production of algal biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Antonakou E, Lappers A, Nilsen M, Bouzga A, Stocker M (2006) Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of biofuels and chemicals. Fuel 85:2202–2212

    Article  CAS  Google Scholar 

  • Ashok G, Barry DM, Sharon MK, Nicholas CP, Olaf JR, Peter JH (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. ChemPhysChem 10(9–10):1492–1499

    Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311

    Article  CAS  Google Scholar 

  • Binks BP (2002) Particles as surfactants – similarities and differences. Curr Opin Colloid Interface Sci 7:21–25

    Article  CAS  Google Scholar 

  • Burton T, Lyons H, Lerat Y, Stanley M, BoRasmussen M (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, Ireland

    Google Scholar 

  • Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81(1):89–98

    Article  CAS  Google Scholar 

  • Cardona Alzate CA, Sanchez Toro OJ (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31(13):2111–2123

    Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  • Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327:68–72

    Article  CAS  Google Scholar 

  • Cruz JC, Pfromm PH, Tomich JM, Rezac ME (2010) Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I tertiary structure. Colloids Surf B Biointerfaces 79(1):97–104

    Article  CAS  Google Scholar 

  • Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley R (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147

    Article  CAS  Google Scholar 

  • Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 1:1006–1009

    Article  Google Scholar 

  • Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21:1792–815

    Article  CAS  Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327

    CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology – a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  Google Scholar 

  • Gibson K (2009) Nanofarming technology harvest biofuel oils without harming algae, News release, U.S. Department of Energy, Ames Laboratory, Ames, IA

    Google Scholar 

  • Henshaw PF, Zeu W (2001) Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Res 35:3605–3610

    Article  CAS  Google Scholar 

  • Hongfei J, Guangyu Z, Bradley V, Woraphon K, Darrell HR, Ping W (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18(5):1027–1032

    Article  Google Scholar 

  • Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl Catal B Environ 62(3–4):226–235

    Article  CAS  Google Scholar 

  • Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S (2006) Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng 102:442–446

    Article  CAS  Google Scholar 

  • Khan SA, Rashmi HMZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372

    Article  CAS  Google Scholar 

  • Khanal SK, Surampalli RY, Zhang TC, Lamsal BP, Tyagi RD, Kao CM (2010) Bioenergy and biofuel from biowastes and biomass. Sponsored by Bioenergy and Biofuel Task Committee of the Environmental Council, Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers, Reston, Virginia: ASCE, 978–0–7844–1089–9, 505 pp

    Google Scholar 

  • Kim J, Grate JW (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/in-organic network. Nano Lett 3(9):1219–1222

    Article  CAS  Google Scholar 

  • Kim HJ, Kang B, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93–93:315–320

    Article  Google Scholar 

  • Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH, Gu MB (2005) Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 16(7):S382–S388

    Article  Google Scholar 

  • Korres NE, Singh A, Nizami AS, Murphy JD (2010) Is grass biomethane a sustainable transport biofuel? Biofuels Bioprod Bioref 4:310–325

    Article  CAS  Google Scholar 

  • Kukizak M, Goto M (2006) Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. J Membr Sci 281(1–2):386–96

    Article  Google Scholar 

  • Kusdiana D, Saka S (2004) Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol 91(3):289–295

    Article  CAS  Google Scholar 

  • Laudenslager M, Scheffer RH, Sigmund W (2010) Electrospun materials for energy harvesting, conversion and storage: a review. Pure Appl Chem 82:2137–2156

    Article  CAS  Google Scholar 

  • Lee KH, Kim BW (1998) Enhanced microbial removal of H2S using chlorobium in an optical fiber bioreactor. Biotechnol Lett 20:525–529

    Article  CAS  Google Scholar 

  • Lee CG, Palsson BØ (1994) High-density algal photobioreactors using light-emitting diodes. Biotechnol Bioeng 44(10):1161–1167

    Article  CAS  Google Scholar 

  • Leliveld RG, Ros TG, Dillon AJ, Geus JW (1999) Influence of Si/Al ratio on catalytic performance of (Co)Mo/sapponite catalysts. J Catal 185:513–523

    Article  CAS  Google Scholar 

  • Li C, Yoshimoto M, Fukunaga K, Nakao K (2007) Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresour Technol 98(7):1366–1372

    Article  CAS  Google Scholar 

  • Liu XJ, Piao XL, Wang YJ, Zhu SF (2008) Calcium ethoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel. Energy Fuels 22(2):1313–1317

    Article  CAS  Google Scholar 

  • Lucena IL, Silva GF, Fernandes FAN (2008) Biodiesel production by esterification of oleic acid with methanol using a water adsorption apparatus. Ind Eng Chem Res 47(18):6885–6889

    Article  CAS  Google Scholar 

  • Moxley GZ, Zhu Z, Zhang YH (2008) Efficient sugar release by the cellulose solvent-based lignocellulosic fractionation technology and enzymatic hydrolysis. J Agric Food Chem 56(17):7885–7890

    Article  CAS  Google Scholar 

  • Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  Google Scholar 

  • Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H (2010) Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv Eng Mater 12:B179–B183

    Article  Google Scholar 

  • Pompa PP, Martiradonna L, Della Torre A, Della Sala F, Manna L, De Vittorio M, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1:126

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Jain N, Joshi HC (2007a) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuels 21:2415–2420

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007b) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Pugh S, McKenna R, Moolick R, Neilson DR (2010) Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Can J Chem Eng 89:1–12

    Google Scholar 

  • Reddy CRV, Oshel R, Verkade JG (2006) Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy Fuels 20:1310–4

    Article  CAS  Google Scholar 

  • Schugerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8(3):294–300

    Article  Google Scholar 

  • Sen T (2010) (2010) Novel nanocomposites: hierarchically ordered silica for the immobilization of enzyme as bio-catalyst. NSTI Nanotech 1:784–787

    CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2010a) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 101:234–238

    Article  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010b) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102:26–34

    Article  CAS  Google Scholar 

  • Stark GR (1971) Biochemical aspects of reactions on solid supports. Academic, New York

    Google Scholar 

  • Steele JM, Grady NK, Nordlander P, Halas NJ (2007) Plasmon hybridization in complex nanostructures, Chap. 13. In: Brongerma ML, Kik PG (eds) Surface plasmon nanophotonics. Springer, New York, 183–196

    Google Scholar 

  • Straathof AJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19(3):755–762

    Article  CAS  Google Scholar 

  • Strey R, Nawrath A, Sottmann T (2007) Microemulsions and use thereof as a fuel, US Patent Application 2007/028507

    Google Scholar 

  • Torkamani S, Wani SN, Tang J, Sureshkumar R (2010) Plasmon-enhanced microalgal growth in miniphotobioreactors. Appl Phys Lett 97:043703

    Article  Google Scholar 

  • Tran NH, Bartlett JR, Kannagara GSK, Milev AS, Volk H, Wilson MS (2010) Catalytic upgrading of biorefinery oil from microalgae. Fuel 89:265–74

    Article  CAS  Google Scholar 

  • Wang Y, Hsieh YL (2008) Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. J Membr Sci 309(1–2):73–81

    Article  CAS  Google Scholar 

  • Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y (2004) Proton exchange fuel cells with carbon nanotube based electrodes. Nano Lett 4:345–348

    Article  CAS  Google Scholar 

  • Wang CY, Fu CC, Liu YC (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25

    Article  Google Scholar 

  • Wegner TH, Jones P (2007) A fundamental review of the relationship between nanotechnology and lignocellulosic biomass. In: Lucia LA, Rojas OJ (eds) The nanoscience and technology of rene­wable biomaterials. Wiley-Blackwell, Hoboken, pp 1–42

    Google Scholar 

  • Wu JY, Liu QL, Xiong Y, Zhu AM, Chen Y (2009) Molecular simulation of water/alcohol mixtures’ adsorption and diffusion in zeolite 4A membranes. J Phys Chem B 113(13):4267–4274

    Article  CAS  Google Scholar 

  • Wulff P, Bemert L, Engelskirchen S, Strey R (2009) Water biofuel microemulsions. Institut für Physikalische Chemie, Universität zu Köln, Luxemburger Str. 116, 50939 Cologne, Germany. Poster, Bunsentagung, Cologne (downloaded on 25 May 2012 from http://strey.pc.uni-koeln.de/fileadmin/user_upload/Download/WATER___BIOFUEL_MICROEMULSIONS.pdf

  • Xiao C-X, Cai ZP, Wang T, Kou Y, Yan N (2008) Aqueous-phase Fischer-Tropsch synthesis with a ruthenium nanocluster catalyst. Angew Chem Int Ed 47:746–749

    Article  CAS  Google Scholar 

  • Yeh NC, Chung JP (2009) High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energy Rev 13:2175–2180

    Article  CAS  Google Scholar 

  • Zhong Z, Ang T, Luo J, Gan H, Gedanken A (2005) Synthesis of one-dimensional and porous TiO2 nanostructures by controlled hydrolysis of titanium alkoxide via coupling with an esterification reaction. Chem Mater 17:6814

    Article  CAS  Google Scholar 

  • Zimmerman WB, Hewakandamby BN, TesaÅ™ V, Bandulasena HCH, Omotowa OA (2009) On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food Bioprod Process 87:215–27

    Article  CAS  Google Scholar 

  • Zimmerman WB, TesaÅ™ V, Bandulsena HCH (2011) Towards energy efficient generation with fluidic oscillation. Curr Opin Colloid Interface Sci 16:350–356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrunalini V. Pattarkine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pattarkine, M.V., Pattarkine, V.M. (2012). Nanotechnology for Algal Biofuels. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_8

Download citation

Publish with us

Policies and ethics